K2。基于特征向量分割的乳房x线照片胸肌边界自动检测

H. Abdellatif, T. Taha, O. Zahran, W. Al-Nauimy, F. El-Samie
{"title":"K2。基于特征向量分割的乳房x线照片胸肌边界自动检测","authors":"H. Abdellatif, T. Taha, O. Zahran, W. Al-Nauimy, F. El-Samie","doi":"10.1109/NRSC.2012.6208576","DOIUrl":null,"url":null,"abstract":"Mammograms are X-ray images, which are used in breast cancer detection. Automatic pectoral muscle removal on Medio-Lateral Oblique-view (MLO) of mammograms is an essential step for many mammography processing algorithms. Presence of pectoral muscle gives false positive results in automated breast cancer detection. The sizes, the shapes and the intensity contrasts of pectoral muscles change greatly from one MLO view to another. So, the suppression or exclusion of the pectoral muscle from the mammograms is demanded for computer-aided analysis, and this task requires the identification of the pectoral muscle. The main objective of this study is to propose an automated method to efficiently identify the pectoral muscle in MLO mammograms. This work uses a normalized graph cuts segmentation technique for identifying the pectoral muscle edge.","PeriodicalId":109281,"journal":{"name":"2012 29th National Radio Science Conference (NRSC)","volume":"72 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"K2. Automatic pectoral muscle boundary detection in mammograms using eigenvectors segmentation\",\"authors\":\"H. Abdellatif, T. Taha, O. Zahran, W. Al-Nauimy, F. El-Samie\",\"doi\":\"10.1109/NRSC.2012.6208576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mammograms are X-ray images, which are used in breast cancer detection. Automatic pectoral muscle removal on Medio-Lateral Oblique-view (MLO) of mammograms is an essential step for many mammography processing algorithms. Presence of pectoral muscle gives false positive results in automated breast cancer detection. The sizes, the shapes and the intensity contrasts of pectoral muscles change greatly from one MLO view to another. So, the suppression or exclusion of the pectoral muscle from the mammograms is demanded for computer-aided analysis, and this task requires the identification of the pectoral muscle. The main objective of this study is to propose an automated method to efficiently identify the pectoral muscle in MLO mammograms. This work uses a normalized graph cuts segmentation technique for identifying the pectoral muscle edge.\",\"PeriodicalId\":109281,\"journal\":{\"name\":\"2012 29th National Radio Science Conference (NRSC)\",\"volume\":\"72 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 29th National Radio Science Conference (NRSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC.2012.6208576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 29th National Radio Science Conference (NRSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2012.6208576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

乳房x光照片是用于乳腺癌检测的x射线图像。在乳房x线照片的中外侧斜位视图(MLO)上自动去除胸肌是许多乳房x线照片处理算法的重要步骤。在乳腺癌自动检测中,胸肌的存在会产生假阳性结果。在不同的MLO影像中,胸肌的大小、形状和强度对比变化很大。因此,计算机辅助分析需要在乳房x线照片中抑制或排除胸肌,而这项任务需要识别胸肌。本研究的主要目的是提出一种在MLO乳房x线照片中有效识别胸肌的自动方法。本文采用归一化图切割分割技术来识别胸肌边缘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K2. Automatic pectoral muscle boundary detection in mammograms using eigenvectors segmentation
Mammograms are X-ray images, which are used in breast cancer detection. Automatic pectoral muscle removal on Medio-Lateral Oblique-view (MLO) of mammograms is an essential step for many mammography processing algorithms. Presence of pectoral muscle gives false positive results in automated breast cancer detection. The sizes, the shapes and the intensity contrasts of pectoral muscles change greatly from one MLO view to another. So, the suppression or exclusion of the pectoral muscle from the mammograms is demanded for computer-aided analysis, and this task requires the identification of the pectoral muscle. The main objective of this study is to propose an automated method to efficiently identify the pectoral muscle in MLO mammograms. This work uses a normalized graph cuts segmentation technique for identifying the pectoral muscle edge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信