基于自适应查询的闭域因子问答排名改进模型

Huey Ling Toh, L. Hawkes, R. Lacher
{"title":"基于自适应查询的闭域因子问答排名改进模型","authors":"Huey Ling Toh, L. Hawkes, R. Lacher","doi":"10.1109/I-SOCIETY16502.2010.6018709","DOIUrl":null,"url":null,"abstract":"The closed domain question answering QA systems achieve precision and recall at the cost of complex language processing techniques to parse the answer corpus. The task of locating the search phrase in the small answer corpus is non-trivial, as there are fewer answers to search from. We propose a query-based model for indexing answers in a closed domain factoid question answering system. Further, we use a phrase term inference method for improving the ranking order of related questions. Our solution offers an adaptive, lightweight approach to a factoid question answering system for domain specific knowledge bases with significantly simplified language processing techniques.","PeriodicalId":407855,"journal":{"name":"2010 International Conference on Information Society","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive query-based model for improved ranking in closed domain factoid question answering\",\"authors\":\"Huey Ling Toh, L. Hawkes, R. Lacher\",\"doi\":\"10.1109/I-SOCIETY16502.2010.6018709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The closed domain question answering QA systems achieve precision and recall at the cost of complex language processing techniques to parse the answer corpus. The task of locating the search phrase in the small answer corpus is non-trivial, as there are fewer answers to search from. We propose a query-based model for indexing answers in a closed domain factoid question answering system. Further, we use a phrase term inference method for improving the ranking order of related questions. Our solution offers an adaptive, lightweight approach to a factoid question answering system for domain specific knowledge bases with significantly simplified language processing techniques.\",\"PeriodicalId\":407855,\"journal\":{\"name\":\"2010 International Conference on Information Society\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Information Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I-SOCIETY16502.2010.6018709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Information Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SOCIETY16502.2010.6018709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

闭域问答系统以复杂的语言处理技术来解析答案语料库为代价来实现准确性和召回率。在小答案语料库中定位搜索短语的任务很重要,因为可供搜索的答案较少。提出了一种基于查询的闭域因子问答系统答案索引模型。进一步,我们使用短语项推理方法来提高相关问题的排序顺序。我们的解决方案提供了一种自适应的、轻量级的方法,通过显著简化的语言处理技术,为领域特定知识库提供了一个事实问答系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive query-based model for improved ranking in closed domain factoid question answering
The closed domain question answering QA systems achieve precision and recall at the cost of complex language processing techniques to parse the answer corpus. The task of locating the search phrase in the small answer corpus is non-trivial, as there are fewer answers to search from. We propose a query-based model for indexing answers in a closed domain factoid question answering system. Further, we use a phrase term inference method for improving the ranking order of related questions. Our solution offers an adaptive, lightweight approach to a factoid question answering system for domain specific knowledge bases with significantly simplified language processing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信