基于人工神经元网络的智能手写泰语签名识别系统

Naruemol Chumuang, M. Ketcham
{"title":"基于人工神经元网络的智能手写泰语签名识别系统","authors":"Naruemol Chumuang, M. Ketcham","doi":"10.1109/TENCON.2014.7022415","DOIUrl":null,"url":null,"abstract":"This paper proposes an Intelligent Handwriting Thai Signature Recognition System base on Multilayer Perceptron and Radial Basis Network. The proposed system compose of three main processes, i.e. image pre-processing, feature extraction and Thai signature recognition. In the recognition processes the neural network is used into two stage. First, Multilayer Perceptron (MLP) and Radial Basis Function (RBF) is used to learning handwriting Thai signature and then the trained network will be used for recognizing. Later, RBF is used to decision in final stage. There are 600 images from 10 writers in this experiment then the experimental results show that the proposed method yielded the satisfied results.","PeriodicalId":292057,"journal":{"name":"TENCON 2014 - 2014 IEEE Region 10 Conference","volume":"23 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Intelligent handwriting Thai Signature Recognition System based on artificial neuron network\",\"authors\":\"Naruemol Chumuang, M. Ketcham\",\"doi\":\"10.1109/TENCON.2014.7022415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an Intelligent Handwriting Thai Signature Recognition System base on Multilayer Perceptron and Radial Basis Network. The proposed system compose of three main processes, i.e. image pre-processing, feature extraction and Thai signature recognition. In the recognition processes the neural network is used into two stage. First, Multilayer Perceptron (MLP) and Radial Basis Function (RBF) is used to learning handwriting Thai signature and then the trained network will be used for recognizing. Later, RBF is used to decision in final stage. There are 600 images from 10 writers in this experiment then the experimental results show that the proposed method yielded the satisfied results.\",\"PeriodicalId\":292057,\"journal\":{\"name\":\"TENCON 2014 - 2014 IEEE Region 10 Conference\",\"volume\":\"23 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2014 - 2014 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2014.7022415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2014 - 2014 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2014.7022415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

提出了一种基于多层感知机和径向基网络的智能手写泰语签名识别系统。该系统由图像预处理、特征提取和泰语签名识别三个主要过程组成。在识别过程中,神经网络的应用分为两个阶段。首先利用多层感知器(MLP)和径向基函数(RBF)对手写泰文签名进行学习,然后将训练好的网络用于识别。最后,利用RBF进行最后阶段的决策。实验中有来自10位作家的600幅图像,实验结果表明,所提出的方法取得了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent handwriting Thai Signature Recognition System based on artificial neuron network
This paper proposes an Intelligent Handwriting Thai Signature Recognition System base on Multilayer Perceptron and Radial Basis Network. The proposed system compose of three main processes, i.e. image pre-processing, feature extraction and Thai signature recognition. In the recognition processes the neural network is used into two stage. First, Multilayer Perceptron (MLP) and Radial Basis Function (RBF) is used to learning handwriting Thai signature and then the trained network will be used for recognizing. Later, RBF is used to decision in final stage. There are 600 images from 10 writers in this experiment then the experimental results show that the proposed method yielded the satisfied results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信