MBET: dnn的弹性改进方法

Abdullah Murat Buldu, A. Sen, Karthik Swaminathan, B. Kahne
{"title":"MBET: dnn的弹性改进方法","authors":"Abdullah Murat Buldu, A. Sen, Karthik Swaminathan, B. Kahne","doi":"10.1109/AITest55621.2022.00019","DOIUrl":null,"url":null,"abstract":"Deep neural network (DNN) accelerators become a large study field. Low voltage DNN accelerators are designed to achieve high throughput and reduce energy consumption. Using low voltage leads to many bit errors in DNN weights. One method to increase fault tolerance against random bit errors is random bit error training. In this paper, we improve this method with multiple bit error rate training (MBET). MBET aims to improve the fault tolerance of the DNN model with using more than one bit error rates. During the training, we inject bit errors with different rates and combine the corresponding loss values. The experimental results on 4 state-of-the-art models show that this method improves fault tolerance of the model against random bit errors while it does not decrease the test accuracy of the model.","PeriodicalId":427386,"journal":{"name":"2022 IEEE International Conference On Artificial Intelligence Testing (AITest)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MBET: Resilience Improvement Method for DNNs\",\"authors\":\"Abdullah Murat Buldu, A. Sen, Karthik Swaminathan, B. Kahne\",\"doi\":\"10.1109/AITest55621.2022.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural network (DNN) accelerators become a large study field. Low voltage DNN accelerators are designed to achieve high throughput and reduce energy consumption. Using low voltage leads to many bit errors in DNN weights. One method to increase fault tolerance against random bit errors is random bit error training. In this paper, we improve this method with multiple bit error rate training (MBET). MBET aims to improve the fault tolerance of the DNN model with using more than one bit error rates. During the training, we inject bit errors with different rates and combine the corresponding loss values. The experimental results on 4 state-of-the-art models show that this method improves fault tolerance of the model against random bit errors while it does not decrease the test accuracy of the model.\",\"PeriodicalId\":427386,\"journal\":{\"name\":\"2022 IEEE International Conference On Artificial Intelligence Testing (AITest)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference On Artificial Intelligence Testing (AITest)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AITest55621.2022.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference On Artificial Intelligence Testing (AITest)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AITest55621.2022.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

深度神经网络(DNN)加速器成为一个重要的研究领域。低电压DNN加速器旨在实现高吞吐量和降低能耗。使用低电压会导致深度神经网络权重出现很多位误差。提高随机误码容错性的一种方法是随机误码训练。本文采用多误码率训练(MBET)对该方法进行改进。MBET的目的是提高DNN模型的容错率,使用一个以上的误码率。在训练过程中,我们注入不同速率的误码,并结合相应的损失值。在4个最先进的模型上的实验结果表明,该方法提高了模型对随机比特错误的容错性,同时不降低模型的测试精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MBET: Resilience Improvement Method for DNNs
Deep neural network (DNN) accelerators become a large study field. Low voltage DNN accelerators are designed to achieve high throughput and reduce energy consumption. Using low voltage leads to many bit errors in DNN weights. One method to increase fault tolerance against random bit errors is random bit error training. In this paper, we improve this method with multiple bit error rate training (MBET). MBET aims to improve the fault tolerance of the DNN model with using more than one bit error rates. During the training, we inject bit errors with different rates and combine the corresponding loss values. The experimental results on 4 state-of-the-art models show that this method improves fault tolerance of the model against random bit errors while it does not decrease the test accuracy of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信