{"title":"度量力场中时空与本征时空的演化序列及相关几何序列[j]","authors":"O. Joseph","doi":"10.9734/psij/2021/v25i1030284","DOIUrl":null,"url":null,"abstract":"Two classes of three-dimensional metric spaces are identified. They are the conventional three-dimensional metric space and a new ‘three-dimensional’ absolute intrinsic metric space. Whereas an initial flat conventional proper metric space IE′3 can transform into a curved three-dimensionalRiemannian metric space IM′3 without any of its dimension spanning the time dimension (or in the absence of the time dimension), in conventional Riemann geometry, an initial flat ‘three-dimensional’ absolute intrinsic metric space ∅IˆE3 (as a flat hyper-surface) along the horizontal, evolves into a curved ‘three-dimensional’ absolute intrinsic metric space ∅IˆM3, which is curved (as a curved hyper-surface) toward the absolute intrinsic metric time ‘dimension’ along the vertical, and it is identified as ‘three-dimensional’ absolute intrinsic Riemannian metric space. It invariantly projects a flat ‘three-dimensional’ absolute proper intrinsic metric space ∅IE′3ab along the horizontal, which is made manifested outwardly in flat ‘three-dimensional’ absolute proper metric space IE′3ab, overlying it, both as flat hyper-surfaces along the horizontal. The flat conventional three-dimensional relative proper metric space IE′3 and its underlying flat three-dimensional relative proper intrinsic metric space ∅IE′3 remain unchanged. The observers are located in IE′3. The projective ∅IE′3ab is imperceptibly embedded in ∅IE′3 and IE′3ab in IE′3. The corresponding absolute intrinsic metric time ‘dimension’ is not curved from its vertical position simultaneously with ‘three-dimensional’ absolute intrinsic metric space. The development of absolute intrinsic Riemannian geometry is commenced and the conclusion that the resulting geometry is more all-encompassing then the conventional Riemannian geometry on curved conventional metric space IM′3 only is reached.","PeriodicalId":124795,"journal":{"name":"Physical Science International Journal","volume":"37 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolutionary Sequence of Spacetime and Intrinsic Spacetime and Associated Sequence of Geometries in Metric Force Fields I\",\"authors\":\"O. Joseph\",\"doi\":\"10.9734/psij/2021/v25i1030284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two classes of three-dimensional metric spaces are identified. They are the conventional three-dimensional metric space and a new ‘three-dimensional’ absolute intrinsic metric space. Whereas an initial flat conventional proper metric space IE′3 can transform into a curved three-dimensionalRiemannian metric space IM′3 without any of its dimension spanning the time dimension (or in the absence of the time dimension), in conventional Riemann geometry, an initial flat ‘three-dimensional’ absolute intrinsic metric space ∅IˆE3 (as a flat hyper-surface) along the horizontal, evolves into a curved ‘three-dimensional’ absolute intrinsic metric space ∅IˆM3, which is curved (as a curved hyper-surface) toward the absolute intrinsic metric time ‘dimension’ along the vertical, and it is identified as ‘three-dimensional’ absolute intrinsic Riemannian metric space. It invariantly projects a flat ‘three-dimensional’ absolute proper intrinsic metric space ∅IE′3ab along the horizontal, which is made manifested outwardly in flat ‘three-dimensional’ absolute proper metric space IE′3ab, overlying it, both as flat hyper-surfaces along the horizontal. The flat conventional three-dimensional relative proper metric space IE′3 and its underlying flat three-dimensional relative proper intrinsic metric space ∅IE′3 remain unchanged. The observers are located in IE′3. The projective ∅IE′3ab is imperceptibly embedded in ∅IE′3 and IE′3ab in IE′3. The corresponding absolute intrinsic metric time ‘dimension’ is not curved from its vertical position simultaneously with ‘three-dimensional’ absolute intrinsic metric space. The development of absolute intrinsic Riemannian geometry is commenced and the conclusion that the resulting geometry is more all-encompassing then the conventional Riemannian geometry on curved conventional metric space IM′3 only is reached.\",\"PeriodicalId\":124795,\"journal\":{\"name\":\"Physical Science International Journal\",\"volume\":\"37 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Science International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/psij/2021/v25i1030284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Science International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/psij/2021/v25i1030284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolutionary Sequence of Spacetime and Intrinsic Spacetime and Associated Sequence of Geometries in Metric Force Fields I
Two classes of three-dimensional metric spaces are identified. They are the conventional three-dimensional metric space and a new ‘three-dimensional’ absolute intrinsic metric space. Whereas an initial flat conventional proper metric space IE′3 can transform into a curved three-dimensionalRiemannian metric space IM′3 without any of its dimension spanning the time dimension (or in the absence of the time dimension), in conventional Riemann geometry, an initial flat ‘three-dimensional’ absolute intrinsic metric space ∅IˆE3 (as a flat hyper-surface) along the horizontal, evolves into a curved ‘three-dimensional’ absolute intrinsic metric space ∅IˆM3, which is curved (as a curved hyper-surface) toward the absolute intrinsic metric time ‘dimension’ along the vertical, and it is identified as ‘three-dimensional’ absolute intrinsic Riemannian metric space. It invariantly projects a flat ‘three-dimensional’ absolute proper intrinsic metric space ∅IE′3ab along the horizontal, which is made manifested outwardly in flat ‘three-dimensional’ absolute proper metric space IE′3ab, overlying it, both as flat hyper-surfaces along the horizontal. The flat conventional three-dimensional relative proper metric space IE′3 and its underlying flat three-dimensional relative proper intrinsic metric space ∅IE′3 remain unchanged. The observers are located in IE′3. The projective ∅IE′3ab is imperceptibly embedded in ∅IE′3 and IE′3ab in IE′3. The corresponding absolute intrinsic metric time ‘dimension’ is not curved from its vertical position simultaneously with ‘three-dimensional’ absolute intrinsic metric space. The development of absolute intrinsic Riemannian geometry is commenced and the conclusion that the resulting geometry is more all-encompassing then the conventional Riemannian geometry on curved conventional metric space IM′3 only is reached.