度量力场中时空与本征时空的演化序列及相关几何序列[j]

O. Joseph
{"title":"度量力场中时空与本征时空的演化序列及相关几何序列[j]","authors":"O. Joseph","doi":"10.9734/psij/2021/v25i1030284","DOIUrl":null,"url":null,"abstract":"Two classes of three-dimensional metric spaces are identified. They are the conventional three-dimensional metric space and a new ‘three-dimensional’ absolute intrinsic metric space. Whereas an initial flat conventional proper metric space IE′3 can transform into a curved three-dimensionalRiemannian metric space IM′3 without any of its dimension spanning the time dimension (or in the absence of the time dimension), in conventional Riemann geometry, an initial flat ‘three-dimensional’ absolute intrinsic metric space ∅IˆE3 (as a flat hyper-surface) along the horizontal, evolves into a curved ‘three-dimensional’ absolute intrinsic metric space ∅IˆM3, which is curved (as a curved hyper-surface) toward the absolute intrinsic metric time ‘dimension’ along the vertical, and it is identified as ‘three-dimensional’ absolute intrinsic Riemannian metric space. It invariantly projects a flat ‘three-dimensional’ absolute proper intrinsic metric space ∅IE′3ab along the horizontal, which is made manifested outwardly in flat ‘three-dimensional’ absolute proper metric space IE′3ab, overlying it, both as flat hyper-surfaces along the horizontal. The flat conventional three-dimensional relative proper metric space IE′3 and its underlying flat three-dimensional relative proper intrinsic metric space ∅IE′3 remain unchanged. The observers are located in IE′3. The projective ∅IE′3ab is imperceptibly embedded in ∅IE′3 and IE′3ab in IE′3. The corresponding absolute intrinsic metric time ‘dimension’ is not curved from its vertical position simultaneously with ‘three-dimensional’ absolute intrinsic metric space. The development of absolute intrinsic Riemannian geometry is commenced and the conclusion that the resulting geometry is more all-encompassing then the conventional Riemannian geometry on curved conventional metric space IM′3 only is reached.","PeriodicalId":124795,"journal":{"name":"Physical Science International Journal","volume":"37 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolutionary Sequence of Spacetime and Intrinsic Spacetime and Associated Sequence of Geometries in Metric Force Fields I\",\"authors\":\"O. Joseph\",\"doi\":\"10.9734/psij/2021/v25i1030284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two classes of three-dimensional metric spaces are identified. They are the conventional three-dimensional metric space and a new ‘three-dimensional’ absolute intrinsic metric space. Whereas an initial flat conventional proper metric space IE′3 can transform into a curved three-dimensionalRiemannian metric space IM′3 without any of its dimension spanning the time dimension (or in the absence of the time dimension), in conventional Riemann geometry, an initial flat ‘three-dimensional’ absolute intrinsic metric space ∅IˆE3 (as a flat hyper-surface) along the horizontal, evolves into a curved ‘three-dimensional’ absolute intrinsic metric space ∅IˆM3, which is curved (as a curved hyper-surface) toward the absolute intrinsic metric time ‘dimension’ along the vertical, and it is identified as ‘three-dimensional’ absolute intrinsic Riemannian metric space. It invariantly projects a flat ‘three-dimensional’ absolute proper intrinsic metric space ∅IE′3ab along the horizontal, which is made manifested outwardly in flat ‘three-dimensional’ absolute proper metric space IE′3ab, overlying it, both as flat hyper-surfaces along the horizontal. The flat conventional three-dimensional relative proper metric space IE′3 and its underlying flat three-dimensional relative proper intrinsic metric space ∅IE′3 remain unchanged. The observers are located in IE′3. The projective ∅IE′3ab is imperceptibly embedded in ∅IE′3 and IE′3ab in IE′3. The corresponding absolute intrinsic metric time ‘dimension’ is not curved from its vertical position simultaneously with ‘three-dimensional’ absolute intrinsic metric space. The development of absolute intrinsic Riemannian geometry is commenced and the conclusion that the resulting geometry is more all-encompassing then the conventional Riemannian geometry on curved conventional metric space IM′3 only is reached.\",\"PeriodicalId\":124795,\"journal\":{\"name\":\"Physical Science International Journal\",\"volume\":\"37 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Science International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/psij/2021/v25i1030284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Science International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/psij/2021/v25i1030284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

确定了两类三维度量空间。它们是传统的三维度量空间和一种新的“三维”绝对固有度量空间。而初始平坦的常规固有度量空间IE ' 3可以转换成弯曲的三维黎曼度量空间IM ' 3,而其任何维度都没有跨越时间维度(或在没有时间维度的情况下),在常规黎曼几何中,初始平坦的'三维'绝对固有度量空间∅I´E3(作为平坦的超曲面)沿着水平方向演变成弯曲的'三维'绝对固有度量空间∅I´M3,它沿着垂直方向弯曲(作为一个弯曲的超表面)朝向绝对内在度量时间“维度”,并且它被确定为“三维”绝对内在黎曼度量空间。它沿水平方向不变地投射一个平坦的“三维”绝对固有度量空间∅IE ' 3ab,该空间向外表现为平坦的“三维”绝对固有度量空间IE ' 3ab,并覆盖于其上,两者沿水平方向均为平坦的超表面。平面常规三维相对固有度量空间IE ' 3及其底层平面三维相对固有度量空间∅IE ' 3不变。观察员位于IE ' 3。投影∅IE ' 3ab在IE ' 3中不知不觉嵌入了∅IE ' 3和IE ' 3ab。相应的绝对内禀度量时间“维”不与“三维”绝对内禀度量空间同时从其垂直位置弯曲。本文开始了绝对本征黎曼几何的发展,并得出了所得到的几何比仅在弯曲的常规度量空间IM ' 3上的常规黎曼几何更包罗万象的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary Sequence of Spacetime and Intrinsic Spacetime and Associated Sequence of Geometries in Metric Force Fields I
Two classes of three-dimensional metric spaces are identified. They are the conventional three-dimensional metric space and a new ‘three-dimensional’ absolute intrinsic metric space. Whereas an initial flat conventional proper metric space IE′3 can transform into a curved three-dimensionalRiemannian metric space IM′3 without any of its dimension spanning the time dimension (or in the absence of the time dimension), in conventional Riemann geometry, an initial flat ‘three-dimensional’ absolute intrinsic metric space ∅IˆE3 (as a flat hyper-surface) along the horizontal, evolves into a curved ‘three-dimensional’ absolute intrinsic metric space ∅IˆM3, which is curved (as a curved hyper-surface) toward the absolute intrinsic metric time ‘dimension’ along the vertical, and it is identified as ‘three-dimensional’ absolute intrinsic Riemannian metric space. It invariantly projects a flat ‘three-dimensional’ absolute proper intrinsic metric space ∅IE′3ab along the horizontal, which is made manifested outwardly in flat ‘three-dimensional’ absolute proper metric space IE′3ab, overlying it, both as flat hyper-surfaces along the horizontal. The flat conventional three-dimensional relative proper metric space IE′3 and its underlying flat three-dimensional relative proper intrinsic metric space ∅IE′3 remain unchanged. The observers are located in IE′3. The projective ∅IE′3ab is imperceptibly embedded in ∅IE′3 and IE′3ab in IE′3. The corresponding absolute intrinsic metric time ‘dimension’ is not curved from its vertical position simultaneously with ‘three-dimensional’ absolute intrinsic metric space. The development of absolute intrinsic Riemannian geometry is commenced and the conclusion that the resulting geometry is more all-encompassing then the conventional Riemannian geometry on curved conventional metric space IM′3 only is reached.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信