基于忆阻器的电流饥渴型逆变器延时元件

Siti Musliha Ajmal Binti Mokhtar, W. Abdullah
{"title":"基于忆阻器的电流饥渴型逆变器延时元件","authors":"Siti Musliha Ajmal Binti Mokhtar, W. Abdullah","doi":"10.1109/RSM.2013.6706478","DOIUrl":null,"url":null,"abstract":"This paper will first review on some applications of newly found passive element, the memristor. Utilizing the beneficial characteristic of memristor where it can remember its last state, more and more improvements on today electronic designs has been proposed. However, it is crucial to observe the behavior of memristor model before applying into circuits, especially when the memristor is coupled with other devices. In this paper, LTspice memristor model is used to simulate memristor behavior and applied to the basic delay element circuit. The circuit used a tristate inverter as the delay element. It controls the current flowing to the parasitic capacitor, thus controlling the delay. The compatibility of memristor with the delay element is also in consideration to ensure the functionality of the circuits. At the end, a basic delay element using inverter and memristor is presented. This paper is divided into 4 sections, including the introduction where few examples of memristor applications are explained. It follows by next section where the inverter delay characteristic is narrated. Section 3 is about a mathematical model of memristor that been used to provide a specific memristor resistance in order to get certain delay value during simulation. Using LT spice, a memristor based delay circuit design is then proposed and the delay is observed by circuit simulation. In conclusion, the calculated R and delay value is then compared to the simulation result in order to verify circuit functionality.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"325 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Memristor based delay element using current starved inverter\",\"authors\":\"Siti Musliha Ajmal Binti Mokhtar, W. Abdullah\",\"doi\":\"10.1109/RSM.2013.6706478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper will first review on some applications of newly found passive element, the memristor. Utilizing the beneficial characteristic of memristor where it can remember its last state, more and more improvements on today electronic designs has been proposed. However, it is crucial to observe the behavior of memristor model before applying into circuits, especially when the memristor is coupled with other devices. In this paper, LTspice memristor model is used to simulate memristor behavior and applied to the basic delay element circuit. The circuit used a tristate inverter as the delay element. It controls the current flowing to the parasitic capacitor, thus controlling the delay. The compatibility of memristor with the delay element is also in consideration to ensure the functionality of the circuits. At the end, a basic delay element using inverter and memristor is presented. This paper is divided into 4 sections, including the introduction where few examples of memristor applications are explained. It follows by next section where the inverter delay characteristic is narrated. Section 3 is about a mathematical model of memristor that been used to provide a specific memristor resistance in order to get certain delay value during simulation. Using LT spice, a memristor based delay circuit design is then proposed and the delay is observed by circuit simulation. In conclusion, the calculated R and delay value is then compared to the simulation result in order to verify circuit functionality.\",\"PeriodicalId\":346255,\"journal\":{\"name\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"volume\":\"325 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2013.6706478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文首先综述了新发现的无源元件忆阻器的一些应用。利用忆阻器能记住其最后状态的有利特性,对当今的电子设计提出了越来越多的改进。然而,在应用到电路中,特别是当忆阻器与其他器件耦合时,观察忆阻器模型的行为是至关重要的。本文采用LTspice忆阻器模型来模拟忆阻器的行为,并将其应用于基本延迟元件电路。该电路采用三态逆变器作为延时元件。它控制流向寄生电容的电流,从而控制延迟。为了保证电路的功能,还考虑了忆阻器与延迟元件的兼容性。最后,提出了一种基于逆变器和忆阻器的基本延迟元件。本文分为4个部分,包括引言部分,其中解释了几个忆阻器应用的例子。接下来是下一节,其中逆变器的延迟特性是叙述。第3节是关于忆阻器的数学模型,在仿真过程中提供特定的忆阻电阻以获得一定的延迟值。在此基础上,提出了一种基于忆阻器的延迟电路设计,并通过电路仿真观察了延迟。最后,将计算的R值和延迟值与仿真结果进行比较,以验证电路的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memristor based delay element using current starved inverter
This paper will first review on some applications of newly found passive element, the memristor. Utilizing the beneficial characteristic of memristor where it can remember its last state, more and more improvements on today electronic designs has been proposed. However, it is crucial to observe the behavior of memristor model before applying into circuits, especially when the memristor is coupled with other devices. In this paper, LTspice memristor model is used to simulate memristor behavior and applied to the basic delay element circuit. The circuit used a tristate inverter as the delay element. It controls the current flowing to the parasitic capacitor, thus controlling the delay. The compatibility of memristor with the delay element is also in consideration to ensure the functionality of the circuits. At the end, a basic delay element using inverter and memristor is presented. This paper is divided into 4 sections, including the introduction where few examples of memristor applications are explained. It follows by next section where the inverter delay characteristic is narrated. Section 3 is about a mathematical model of memristor that been used to provide a specific memristor resistance in order to get certain delay value during simulation. Using LT spice, a memristor based delay circuit design is then proposed and the delay is observed by circuit simulation. In conclusion, the calculated R and delay value is then compared to the simulation result in order to verify circuit functionality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信