法律文件文本聚类方法的评估

Ingrid L. A. da Silva, R. F. Mello, P. Miranda, André C. A. Nascimento, Isabel W. S. Maldonado, José L. M. Coelho Filho
{"title":"法律文件文本聚类方法的评估","authors":"Ingrid L. A. da Silva, R. F. Mello, P. Miranda, André C. A. Nascimento, Isabel W. S. Maldonado, José L. M. Coelho Filho","doi":"10.5753/eniac.2021.18239","DOIUrl":null,"url":null,"abstract":"O sistema judiciário é composto por inúmeros documentos relacionados a processos jurídicos. Esses documentos podem conter informações relevantes que suportem a tomada de decisão em processos futuros. No entanto, a coleta dessas informações não é uma tarefa trivial. Este artigo propõe o uso de agrupamento para reunir processos semelhantes e facilitar a coleta de informações. Dessa forma, diferentes abordagens foram avaliadas com a intenção de identificar a mais adequada para realizar esta tarefa. As abordagens foram aplicadas a uma base de dados composta por 1515 textos de fatos de petições iniciais. Essas abordagens foram avaliadas levando em consideração métricas de avaliação internas e os textos dos processos agrupados. Os resultados apontaram que a melhor abordagem para realizar o agrupamento de processos jurídicos é composta pelo algoritmo K-Means e pela técnica de representação TF-IDF em combinação com a técnica PCA.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of text clustering approaches for legal documents\",\"authors\":\"Ingrid L. A. da Silva, R. F. Mello, P. Miranda, André C. A. Nascimento, Isabel W. S. Maldonado, José L. M. Coelho Filho\",\"doi\":\"10.5753/eniac.2021.18239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O sistema judiciário é composto por inúmeros documentos relacionados a processos jurídicos. Esses documentos podem conter informações relevantes que suportem a tomada de decisão em processos futuros. No entanto, a coleta dessas informações não é uma tarefa trivial. Este artigo propõe o uso de agrupamento para reunir processos semelhantes e facilitar a coleta de informações. Dessa forma, diferentes abordagens foram avaliadas com a intenção de identificar a mais adequada para realizar esta tarefa. As abordagens foram aplicadas a uma base de dados composta por 1515 textos de fatos de petições iniciais. Essas abordagens foram avaliadas levando em consideração métricas de avaliação internas e os textos dos processos agrupados. Os resultados apontaram que a melhor abordagem para realizar o agrupamento de processos jurídicos é composta pelo algoritmo K-Means e pela técnica de representação TF-IDF em combinação com a técnica PCA.\",\"PeriodicalId\":318676,\"journal\":{\"name\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2021.18239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

司法系统由许多与法律程序有关的文件组成。这些文件可能包含相关信息,以支持未来过程中的决策。然而,收集这些信息并不是一项简单的任务。本文建议使用聚类来收集类似的过程并促进信息收集。因此,对不同的方法进行了评估,以确定最适合执行这项任务的方法。这些方法被应用到一个由1515份最初请愿书的事实文本组成的数据库中。考虑到内部评价指标和分组过程的文本,对这些方法进行了评价。结果表明,K-Means算法和TF-IDF表示技术结合PCA技术是实现法律诉讼聚类的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of text clustering approaches for legal documents
O sistema judiciário é composto por inúmeros documentos relacionados a processos jurídicos. Esses documentos podem conter informações relevantes que suportem a tomada de decisão em processos futuros. No entanto, a coleta dessas informações não é uma tarefa trivial. Este artigo propõe o uso de agrupamento para reunir processos semelhantes e facilitar a coleta de informações. Dessa forma, diferentes abordagens foram avaliadas com a intenção de identificar a mais adequada para realizar esta tarefa. As abordagens foram aplicadas a uma base de dados composta por 1515 textos de fatos de petições iniciais. Essas abordagens foram avaliadas levando em consideração métricas de avaliação internas e os textos dos processos agrupados. Os resultados apontaram que a melhor abordagem para realizar o agrupamento de processos jurídicos é composta pelo algoritmo K-Means e pela técnica de representação TF-IDF em combinação com a técnica PCA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信