基于扩展卡尔曼滤波的电池管理系统充电状态估计

C. Taborelli, S. Onori
{"title":"基于扩展卡尔曼滤波的电池管理系统充电状态估计","authors":"C. Taborelli, S. Onori","doi":"10.1109/IEVC.2014.7056126","DOIUrl":null,"url":null,"abstract":"In this work, the problem of battery state of charge estimation is investigated using a model based approach. An experimentally validated model of a battery developed by AllCell Technologies, specific for light electric vehicles (electric scooter or bicycles) is used. Two state of charge estimation algorithms are developed: an extended Kalman filter and an adaptive extended Kalman filter. The adaptive version of Kalman filter is designed in order to adaptively set a proper value of the model noise covariance, using the information coming from the on-line innovation analysis. A comparison between the two approaches is conducted that shows that the adaptive Kalman filter can deal with the problem of incorrect value of the model noise covariance matrix producing lower estimation error.","PeriodicalId":223794,"journal":{"name":"2014 IEEE International Electric Vehicle Conference (IEVC)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"State of charge estimation using extended Kalman filters for battery management system\",\"authors\":\"C. Taborelli, S. Onori\",\"doi\":\"10.1109/IEVC.2014.7056126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the problem of battery state of charge estimation is investigated using a model based approach. An experimentally validated model of a battery developed by AllCell Technologies, specific for light electric vehicles (electric scooter or bicycles) is used. Two state of charge estimation algorithms are developed: an extended Kalman filter and an adaptive extended Kalman filter. The adaptive version of Kalman filter is designed in order to adaptively set a proper value of the model noise covariance, using the information coming from the on-line innovation analysis. A comparison between the two approaches is conducted that shows that the adaptive Kalman filter can deal with the problem of incorrect value of the model noise covariance matrix producing lower estimation error.\",\"PeriodicalId\":223794,\"journal\":{\"name\":\"2014 IEEE International Electric Vehicle Conference (IEVC)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Electric Vehicle Conference (IEVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEVC.2014.7056126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electric Vehicle Conference (IEVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEVC.2014.7056126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文采用基于模型的方法研究了电池电量状态估计问题。实验验证了由AllCell Technologies开发的电池模型,专门用于轻型电动汽车(电动滑板车或自行车)。提出了两种电荷状态估计算法:扩展卡尔曼滤波和自适应扩展卡尔曼滤波。设计了自适应卡尔曼滤波器,利用在线创新分析的信息自适应地设置模型噪声协方差的合适值。两种方法的比较表明,自适应卡尔曼滤波能较好地处理模型噪声协方差矩阵值不正确的问题,产生较小的估计误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State of charge estimation using extended Kalman filters for battery management system
In this work, the problem of battery state of charge estimation is investigated using a model based approach. An experimentally validated model of a battery developed by AllCell Technologies, specific for light electric vehicles (electric scooter or bicycles) is used. Two state of charge estimation algorithms are developed: an extended Kalman filter and an adaptive extended Kalman filter. The adaptive version of Kalman filter is designed in order to adaptively set a proper value of the model noise covariance, using the information coming from the on-line innovation analysis. A comparison between the two approaches is conducted that shows that the adaptive Kalman filter can deal with the problem of incorrect value of the model noise covariance matrix producing lower estimation error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信