{"title":"双连杆混合机械臂的非线性建模与控制","authors":"M. Reyhanoglu, Derek Hoffman, J. D. Wit","doi":"10.1109/ICARCV.2016.7838809","DOIUrl":null,"url":null,"abstract":"The slew maneuver problem is studied for a robot manipulator consisting of a flexible first link and rigid second link. A nonlinear dynamical model is first derived using a Lagrangian formulation. A notch-filtered finite-time control law is then introduced to achieve fast and precise slewing maneuvers without residual vibrations. The results are applied to a benchmark two-link system and a simulation example is included to illustrate the effectiveness of the proposed control technique.","PeriodicalId":128828,"journal":{"name":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Nonlinear modeling and control of a two-link hybrid manipulator\",\"authors\":\"M. Reyhanoglu, Derek Hoffman, J. D. Wit\",\"doi\":\"10.1109/ICARCV.2016.7838809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The slew maneuver problem is studied for a robot manipulator consisting of a flexible first link and rigid second link. A nonlinear dynamical model is first derived using a Lagrangian formulation. A notch-filtered finite-time control law is then introduced to achieve fast and precise slewing maneuvers without residual vibrations. The results are applied to a benchmark two-link system and a simulation example is included to illustrate the effectiveness of the proposed control technique.\",\"PeriodicalId\":128828,\"journal\":{\"name\":\"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2016.7838809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2016.7838809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear modeling and control of a two-link hybrid manipulator
The slew maneuver problem is studied for a robot manipulator consisting of a flexible first link and rigid second link. A nonlinear dynamical model is first derived using a Lagrangian formulation. A notch-filtered finite-time control law is then introduced to achieve fast and precise slewing maneuvers without residual vibrations. The results are applied to a benchmark two-link system and a simulation example is included to illustrate the effectiveness of the proposed control technique.