使用机队数据训练的性能模型进行飞机异常检测

D. Gorinevsky, B. Matthews, Rodney A. Martin
{"title":"使用机队数据训练的性能模型进行飞机异常检测","authors":"D. Gorinevsky, B. Matthews, Rodney A. Martin","doi":"10.1109/CIDU.2012.6382196","DOIUrl":null,"url":null,"abstract":"This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into a list of abnormaly performing aircraft, abnormal flight-to-flight trends, and individual flight anomalies by fitting a large scale multi-level regression model to the entire data set. The model takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, a multi-terabyte airline data set with a half million flights was processed in a few hours. The anomalies found include wrong values of computed variables such as aircraft weight and angle of attack as well as failures, biases, and trends in flight sensors and actuators. These anomalies were missed by the FOQA data exceedance monitoring currently used by the airline.","PeriodicalId":270712,"journal":{"name":"2012 Conference on Intelligent Data Understanding","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Aircraft anomaly detection using performance models trained on fleet data\",\"authors\":\"D. Gorinevsky, B. Matthews, Rodney A. Martin\",\"doi\":\"10.1109/CIDU.2012.6382196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into a list of abnormaly performing aircraft, abnormal flight-to-flight trends, and individual flight anomalies by fitting a large scale multi-level regression model to the entire data set. The model takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, a multi-terabyte airline data set with a half million flights was processed in a few hours. The anomalies found include wrong values of computed variables such as aircraft weight and angle of attack as well as failures, biases, and trends in flight sensors and actuators. These anomalies were missed by the FOQA data exceedance monitoring currently used by the airline.\",\"PeriodicalId\":270712,\"journal\":{\"name\":\"2012 Conference on Intelligent Data Understanding\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Conference on Intelligent Data Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDU.2012.6382196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Conference on Intelligent Data Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDU.2012.6382196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

本文介绍了分布式机队监控(DFM)数据挖掘技术在某商用机队飞行运行质量保证(FOQA)数据采集中的应用。DFM通过对整个数据集拟合大规模多层次回归模型,将数据转换为异常飞机、异常飞行趋势和个别飞行异常的列表。该模型考虑了固定效应:飞行对飞行和车辆对车辆的可变性。回归参数包括气动系数和其他飞机性能参数,这些参数通常由飞机制造商在飞行试验中确定。使用DFM,在几个小时内处理了包含50万个航班的数tb航空公司数据集。发现的异常包括计算变量的错误值,如飞机重量和迎角,以及飞行传感器和执行器的故障、偏差和趋势。该航空公司目前使用的FOQA数据超标监测漏掉了这些异常情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aircraft anomaly detection using performance models trained on fleet data
This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into a list of abnormaly performing aircraft, abnormal flight-to-flight trends, and individual flight anomalies by fitting a large scale multi-level regression model to the entire data set. The model takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, a multi-terabyte airline data set with a half million flights was processed in a few hours. The anomalies found include wrong values of computed variables such as aircraft weight and angle of attack as well as failures, biases, and trends in flight sensors and actuators. These anomalies were missed by the FOQA data exceedance monitoring currently used by the airline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信