{"title":"基于粘滑效应的显微定位器","authors":"A. Bergander, J. Breguet, C. Schmitt, R. Clavel","doi":"10.1109/MHS.2000.903315","DOIUrl":null,"url":null,"abstract":"Piezo actuators are widely used for precision positioning purposes where a submicron resolution is needed. Among the possible means to increase the working range of those actuators whose stroke is, depending on the material, usually limited to a small fraction of the actuator length, is a stepping motion of the actuator. We use a stepping motion based on the stick and slip effect in order to achieve a long range while maintaining the advantage of a virtually unlimited resolution. In this paper we introduce miniature x-y-stages dedicated to the manipulation of samples under a microscope. As previous setups and experiments have shown, a parallel kinematic structure for positioning purposes in microscopy or micro assembly is not well suited because x and y motion of the actuators have an influence on each other. A system with a serial kinematic structure has therefore been developed. The proposed device will provide the same capabilities as existing motorized stages, but at a lower cost than manual positioning stages and at a very compact size.","PeriodicalId":372317,"journal":{"name":"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Micropositioners for microscopy applications based on the stick-slip effect\",\"authors\":\"A. Bergander, J. Breguet, C. Schmitt, R. Clavel\",\"doi\":\"10.1109/MHS.2000.903315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezo actuators are widely used for precision positioning purposes where a submicron resolution is needed. Among the possible means to increase the working range of those actuators whose stroke is, depending on the material, usually limited to a small fraction of the actuator length, is a stepping motion of the actuator. We use a stepping motion based on the stick and slip effect in order to achieve a long range while maintaining the advantage of a virtually unlimited resolution. In this paper we introduce miniature x-y-stages dedicated to the manipulation of samples under a microscope. As previous setups and experiments have shown, a parallel kinematic structure for positioning purposes in microscopy or micro assembly is not well suited because x and y motion of the actuators have an influence on each other. A system with a serial kinematic structure has therefore been developed. The proposed device will provide the same capabilities as existing motorized stages, but at a lower cost than manual positioning stages and at a very compact size.\",\"PeriodicalId\":372317,\"journal\":{\"name\":\"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MHS.2000.903315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2000.903315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Micropositioners for microscopy applications based on the stick-slip effect
Piezo actuators are widely used for precision positioning purposes where a submicron resolution is needed. Among the possible means to increase the working range of those actuators whose stroke is, depending on the material, usually limited to a small fraction of the actuator length, is a stepping motion of the actuator. We use a stepping motion based on the stick and slip effect in order to achieve a long range while maintaining the advantage of a virtually unlimited resolution. In this paper we introduce miniature x-y-stages dedicated to the manipulation of samples under a microscope. As previous setups and experiments have shown, a parallel kinematic structure for positioning purposes in microscopy or micro assembly is not well suited because x and y motion of the actuators have an influence on each other. A system with a serial kinematic structure has therefore been developed. The proposed device will provide the same capabilities as existing motorized stages, but at a lower cost than manual positioning stages and at a very compact size.