{"title":"HL-Pow:基于学习的高级综合能力建模框架","authors":"Zhe Lin, Jieru Zhao, Sharad Sinha, Wei Zhang","doi":"10.1109/ASP-DAC47756.2020.9045442","DOIUrl":null,"url":null,"abstract":"High-level synthesis (HLS) enables designers to customize hardware designs efficiently. However, it is still challenging to foresee the correlation between power consumption and HLS-based applications at an early design stage. To overcome this problem, we introduce HL-Pow, a power modeling framework for FPGA HLS based on state-of-the-art machine learning techniques. HL-Pow incorporates an automated feature construction flow to efficiently identify and extract features that exert a major influence on power consumption, simply based upon HLS results, and a modeling flow that can build an accurate and generic power model applicable to a variety of designs with HLS. By using HL-Pow, the power evaluation process for FPGA designs can be significantly expedited because the power inference of HL-Pow is established on HLS instead of the time-consuming register-transfer level (RTL) implementation flow. Experimental results demonstrate that HL-Pow can achieve accurate power modeling that is only 4.67% (24.02 mW) away from onboard power measurement. To further facilitate power-oriented optimizations, we describe a novel design space exploration (DSE) algorithm built on top of HL-Pow to trade off between latency and power consumption. This algorithm can reach a close approximation of the real Pareto frontier while only requiring running HLS flow for 20% of design points in the entire design space.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"HL-Pow: A Learning-Based Power Modeling Framework for High-Level Synthesis\",\"authors\":\"Zhe Lin, Jieru Zhao, Sharad Sinha, Wei Zhang\",\"doi\":\"10.1109/ASP-DAC47756.2020.9045442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-level synthesis (HLS) enables designers to customize hardware designs efficiently. However, it is still challenging to foresee the correlation between power consumption and HLS-based applications at an early design stage. To overcome this problem, we introduce HL-Pow, a power modeling framework for FPGA HLS based on state-of-the-art machine learning techniques. HL-Pow incorporates an automated feature construction flow to efficiently identify and extract features that exert a major influence on power consumption, simply based upon HLS results, and a modeling flow that can build an accurate and generic power model applicable to a variety of designs with HLS. By using HL-Pow, the power evaluation process for FPGA designs can be significantly expedited because the power inference of HL-Pow is established on HLS instead of the time-consuming register-transfer level (RTL) implementation flow. Experimental results demonstrate that HL-Pow can achieve accurate power modeling that is only 4.67% (24.02 mW) away from onboard power measurement. To further facilitate power-oriented optimizations, we describe a novel design space exploration (DSE) algorithm built on top of HL-Pow to trade off between latency and power consumption. This algorithm can reach a close approximation of the real Pareto frontier while only requiring running HLS flow for 20% of design points in the entire design space.\",\"PeriodicalId\":125112,\"journal\":{\"name\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC47756.2020.9045442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HL-Pow: A Learning-Based Power Modeling Framework for High-Level Synthesis
High-level synthesis (HLS) enables designers to customize hardware designs efficiently. However, it is still challenging to foresee the correlation between power consumption and HLS-based applications at an early design stage. To overcome this problem, we introduce HL-Pow, a power modeling framework for FPGA HLS based on state-of-the-art machine learning techniques. HL-Pow incorporates an automated feature construction flow to efficiently identify and extract features that exert a major influence on power consumption, simply based upon HLS results, and a modeling flow that can build an accurate and generic power model applicable to a variety of designs with HLS. By using HL-Pow, the power evaluation process for FPGA designs can be significantly expedited because the power inference of HL-Pow is established on HLS instead of the time-consuming register-transfer level (RTL) implementation flow. Experimental results demonstrate that HL-Pow can achieve accurate power modeling that is only 4.67% (24.02 mW) away from onboard power measurement. To further facilitate power-oriented optimizations, we describe a novel design space exploration (DSE) algorithm built on top of HL-Pow to trade off between latency and power consumption. This algorithm can reach a close approximation of the real Pareto frontier while only requiring running HLS flow for 20% of design points in the entire design space.