采用神经模糊网络的智能控制

M. Iskarous, K. Kawamura
{"title":"采用神经模糊网络的智能控制","authors":"M. Iskarous, K. Kawamura","doi":"10.1109/IROS.1995.525908","DOIUrl":null,"url":null,"abstract":"Intelligent control techniques have emerged to overcome some deficiencies in conventional control methods in dealing with complex real-world systems. These problems include knowledge adaptation, learning, and expert knowledge incorporation. In this paper, a hybrid network that combines fuzzy inferencing and neural networks is used to model and to control complex dynamic systems. The network takes advantage of the learning algorithms developed for neural networks to generate the knowledge base used in fuzzy inferencing. The network as used to model and to control a robot arm with flexible pneumatic actuator. Comparison with a nonlinear control technique used for the robot joints is also presented.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Intelligent control using a neuro-fuzzy network\",\"authors\":\"M. Iskarous, K. Kawamura\",\"doi\":\"10.1109/IROS.1995.525908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent control techniques have emerged to overcome some deficiencies in conventional control methods in dealing with complex real-world systems. These problems include knowledge adaptation, learning, and expert knowledge incorporation. In this paper, a hybrid network that combines fuzzy inferencing and neural networks is used to model and to control complex dynamic systems. The network takes advantage of the learning algorithms developed for neural networks to generate the knowledge base used in fuzzy inferencing. The network as used to model and to control a robot arm with flexible pneumatic actuator. Comparison with a nonlinear control technique used for the robot joints is also presented.\",\"PeriodicalId\":124483,\"journal\":{\"name\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1995.525908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.525908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

智能控制技术的出现是为了克服传统控制方法在处理复杂现实系统时的一些不足。这些问题包括知识适应、学习和专家知识整合。本文将模糊推理和神经网络相结合的混合网络用于复杂动态系统的建模和控制。该网络利用为神经网络开发的学习算法来生成用于模糊推理的知识库。利用该网络对具有柔性气动执行器的机械臂进行建模和控制。并与用于机器人关节的非线性控制技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent control using a neuro-fuzzy network
Intelligent control techniques have emerged to overcome some deficiencies in conventional control methods in dealing with complex real-world systems. These problems include knowledge adaptation, learning, and expert knowledge incorporation. In this paper, a hybrid network that combines fuzzy inferencing and neural networks is used to model and to control complex dynamic systems. The network takes advantage of the learning algorithms developed for neural networks to generate the knowledge base used in fuzzy inferencing. The network as used to model and to control a robot arm with flexible pneumatic actuator. Comparison with a nonlinear control technique used for the robot joints is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信