K. Tsukada, E. Sekizuka, C. Oshio, T. Nagai, H. Minamitani
{"title":"用于红细胞变形性测量的晶体微通道毛细管模型","authors":"K. Tsukada, E. Sekizuka, C. Oshio, T. Nagai, H. Minamitani","doi":"10.1109/IEMBS.1997.756795","DOIUrl":null,"url":null,"abstract":"To measure red blood cell (RBC) deformability in vitro, we used microchannels on a crystal substrate as a capillary model. We observed axisymmetry deformed RBCs to estimate their deformability and decided deformability index directly from RBCs themselves. The flowing RBCs in 200 folds through microscopy were recorded with an image-intensified high speed video camera system. This system allowed us to record individual RBC images clearly. We confirmed that the crystal microchannel is a valuable tool for RBC deformability measurement. Microangiopathy is a characteristic complication of diabetes mellitus. The decrease of RBC deformability is thought to cause this complication, In order to identify the deference in RBCs deformability between normal and diabetic RBCs, we could confirm that deformability of diabetic RBCs were much lower than normal ones, and this result suggests a possibility of serious damage in diabetic microcirculation.","PeriodicalId":342750,"journal":{"name":"Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Capillary model of crystal microchannel for red blood cell deformability measurement\",\"authors\":\"K. Tsukada, E. Sekizuka, C. Oshio, T. Nagai, H. Minamitani\",\"doi\":\"10.1109/IEMBS.1997.756795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To measure red blood cell (RBC) deformability in vitro, we used microchannels on a crystal substrate as a capillary model. We observed axisymmetry deformed RBCs to estimate their deformability and decided deformability index directly from RBCs themselves. The flowing RBCs in 200 folds through microscopy were recorded with an image-intensified high speed video camera system. This system allowed us to record individual RBC images clearly. We confirmed that the crystal microchannel is a valuable tool for RBC deformability measurement. Microangiopathy is a characteristic complication of diabetes mellitus. The decrease of RBC deformability is thought to cause this complication, In order to identify the deference in RBCs deformability between normal and diabetic RBCs, we could confirm that deformability of diabetic RBCs were much lower than normal ones, and this result suggests a possibility of serious damage in diabetic microcirculation.\",\"PeriodicalId\":342750,\"journal\":{\"name\":\"Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1997.756795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1997.756795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Capillary model of crystal microchannel for red blood cell deformability measurement
To measure red blood cell (RBC) deformability in vitro, we used microchannels on a crystal substrate as a capillary model. We observed axisymmetry deformed RBCs to estimate their deformability and decided deformability index directly from RBCs themselves. The flowing RBCs in 200 folds through microscopy were recorded with an image-intensified high speed video camera system. This system allowed us to record individual RBC images clearly. We confirmed that the crystal microchannel is a valuable tool for RBC deformability measurement. Microangiopathy is a characteristic complication of diabetes mellitus. The decrease of RBC deformability is thought to cause this complication, In order to identify the deference in RBCs deformability between normal and diabetic RBCs, we could confirm that deformability of diabetic RBCs were much lower than normal ones, and this result suggests a possibility of serious damage in diabetic microcirculation.