多核处理器参数优化的设计空间探索方法

Prasanna Kansakar, Arslan Munir
{"title":"多核处理器参数优化的设计空间探索方法","authors":"Prasanna Kansakar, Arslan Munir","doi":"10.1109/ISVLSI.2016.92","DOIUrl":null,"url":null,"abstract":"Due to the increasing proliferation of computing systems in diverse application domains, the need for application-specific design of multicore/manycore processing platforms is paramount. In order to tailor processors for application-specific requirements, a multitude of processor design parameters need to be tuned accordingly. Tuning of processor design parameters involves rigorous and extensive design space exploration over large search spaces. In this paper, we propose an efficient design space exploration methodology for multicore parameter optimization. Our proposed methodology includes an intelligent initial parameter setting algorithm, the results of which are leveraged by two search algorithms-exhaustive search and greedy search. We evaluate the methodology in a cycle-accurate simulator (ESESC) using standard set of PARSEC and SPLASH2 benchmarks for applications with low-power and highperformance requirements. The results reveal that the quality of solutions (design configurations) obtained from our methodology are within 1.35%-3.69% of the solutions obtained from fully exhaustive search while only exploring 2.74%-3% of the design space. Our methodology achieves on average a 35.32× speedup in design space exploration time as compared to fully exhaustive search in finding the best processor design configuration.","PeriodicalId":140647,"journal":{"name":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Design Space Exploration Methodology for Parameter Optimization in Multicore Processors\",\"authors\":\"Prasanna Kansakar, Arslan Munir\",\"doi\":\"10.1109/ISVLSI.2016.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the increasing proliferation of computing systems in diverse application domains, the need for application-specific design of multicore/manycore processing platforms is paramount. In order to tailor processors for application-specific requirements, a multitude of processor design parameters need to be tuned accordingly. Tuning of processor design parameters involves rigorous and extensive design space exploration over large search spaces. In this paper, we propose an efficient design space exploration methodology for multicore parameter optimization. Our proposed methodology includes an intelligent initial parameter setting algorithm, the results of which are leveraged by two search algorithms-exhaustive search and greedy search. We evaluate the methodology in a cycle-accurate simulator (ESESC) using standard set of PARSEC and SPLASH2 benchmarks for applications with low-power and highperformance requirements. The results reveal that the quality of solutions (design configurations) obtained from our methodology are within 1.35%-3.69% of the solutions obtained from fully exhaustive search while only exploring 2.74%-3% of the design space. Our methodology achieves on average a 35.32× speedup in design space exploration time as compared to fully exhaustive search in finding the best processor design configuration.\",\"PeriodicalId\":140647,\"journal\":{\"name\":\"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2016.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2016.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于计算系统在不同应用领域的激增,对多核/多核处理平台的特定应用设计的需求是至关重要的。为了针对特定于应用程序的需求定制处理器,需要相应地调整大量处理器设计参数。处理器设计参数的调优涉及对大型搜索空间进行严格而广泛的设计空间探索。本文提出了一种高效的多核参数优化设计空间探索方法。我们提出的方法包括一种智能初始参数设置算法,其结果被穷举搜索和贪婪搜索两种搜索算法所利用。我们在周期精确模拟器(ESESC)中使用标准的PARSEC和SPLASH2基准测试集对具有低功耗和高性能要求的应用程序进行评估。结果表明,通过我们的方法获得的解决方案(设计配置)的质量在完全穷举搜索获得的解决方案的1.35%-3.69%之内,而只探索了2.74%-3%的设计空间。在寻找最佳处理器设计配置时,我们的方法在设计空间探索时间上平均实现了35.32倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Design Space Exploration Methodology for Parameter Optimization in Multicore Processors
Due to the increasing proliferation of computing systems in diverse application domains, the need for application-specific design of multicore/manycore processing platforms is paramount. In order to tailor processors for application-specific requirements, a multitude of processor design parameters need to be tuned accordingly. Tuning of processor design parameters involves rigorous and extensive design space exploration over large search spaces. In this paper, we propose an efficient design space exploration methodology for multicore parameter optimization. Our proposed methodology includes an intelligent initial parameter setting algorithm, the results of which are leveraged by two search algorithms-exhaustive search and greedy search. We evaluate the methodology in a cycle-accurate simulator (ESESC) using standard set of PARSEC and SPLASH2 benchmarks for applications with low-power and highperformance requirements. The results reveal that the quality of solutions (design configurations) obtained from our methodology are within 1.35%-3.69% of the solutions obtained from fully exhaustive search while only exploring 2.74%-3% of the design space. Our methodology achieves on average a 35.32× speedup in design space exploration time as compared to fully exhaustive search in finding the best processor design configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信