登革热传播动力学的数学方法

Didar Murad, N. Badshah, S. Ali
{"title":"登革热传播动力学的数学方法","authors":"Didar Murad, N. Badshah, S. Ali","doi":"10.1109/ICAEM.2018.8536287","DOIUrl":null,"url":null,"abstract":"The mathematical model governing ordinary differential system for the dengue fever is considered. Basic reproduction number, $R_{0}$, is achieved, $R_{0} > 1$ implies the disease will transfer and continue in human population and $R_{0} < 1$ implies the disease will vanish. Non linear behavior of the model is studied by using bifurcation technique. For endemic and epidemic cases of the disease, some numerical simulations have been presented for the state variables, infected and susceptible humans. The modeling and simulation results are biologically meaningful.","PeriodicalId":427270,"journal":{"name":"2018 International Conference on Applied and Engineering Mathematics (ICAEM)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mathematical Approach for the Dengue Fever Transmission Dynamics\",\"authors\":\"Didar Murad, N. Badshah, S. Ali\",\"doi\":\"10.1109/ICAEM.2018.8536287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mathematical model governing ordinary differential system for the dengue fever is considered. Basic reproduction number, $R_{0}$, is achieved, $R_{0} > 1$ implies the disease will transfer and continue in human population and $R_{0} < 1$ implies the disease will vanish. Non linear behavior of the model is studied by using bifurcation technique. For endemic and epidemic cases of the disease, some numerical simulations have been presented for the state variables, infected and susceptible humans. The modeling and simulation results are biologically meaningful.\",\"PeriodicalId\":427270,\"journal\":{\"name\":\"2018 International Conference on Applied and Engineering Mathematics (ICAEM)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Applied and Engineering Mathematics (ICAEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAEM.2018.8536287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Applied and Engineering Mathematics (ICAEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEM.2018.8536287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑了登革热常微分系统的数学模型。达到基本繁殖数$R_{0}$, $R_{0} > 1$表示疾病将在人群中转移和继续,$R_{0} < 1$表示疾病将消失。利用分岔技术研究了模型的非线性行为。对于地方病和流行病例,给出了状态变量、感染者和易感人群的数值模拟。建模和仿真结果具有生物学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Approach for the Dengue Fever Transmission Dynamics
The mathematical model governing ordinary differential system for the dengue fever is considered. Basic reproduction number, $R_{0}$, is achieved, $R_{0} > 1$ implies the disease will transfer and continue in human population and $R_{0} < 1$ implies the disease will vanish. Non linear behavior of the model is studied by using bifurcation technique. For endemic and epidemic cases of the disease, some numerical simulations have been presented for the state variables, infected and susceptible humans. The modeling and simulation results are biologically meaningful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信