与光集成

G. Arutinov, M. Giesbers, S. V. W. V. Doorn, F. Chiappini, R. Kusters, J. V. D. Brand
{"title":"与光集成","authors":"G. Arutinov, M. Giesbers, S. V. W. V. Doorn, F. Chiappini, R. Kusters, J. V. D. Brand","doi":"10.1109/ESTC.2018.8546477","DOIUrl":null,"url":null,"abstract":"This paper reports the use of Laser-induced Forward Transfer (LIFT) technology for printing of multilayer flexible circuitries and the fabrication of micro-bumps for flip-chip bonding of packaged LEDs and bare die microcomponents. Bonding of passive and functional surface mount devices (SMD) on low-temperature polyethylene terephthalate (PET) foils have been demonstrated using two selective bonding techniques. Firstly, using a high intensity near-infrared (NIR) lamp, a bare die NFC chip was bonded on micro-bumps formed with LIFT printed isotropic conductive adhesive (ICA) within less than a minute. Secondly, using a high intensity Xenon lamp, passive components and packaged LEDs were bonded within 5 seconds on microbumps formed with conventional Sn–Ag–Cu (SAC) lead-free alloys. In the both cases, due to selective light absorption, a limited temperature increase was observed in the PET substrates allowing successful bonding of components onto the delicate polyethylene foil substrates using conventional interconnect materials.","PeriodicalId":198238,"journal":{"name":"2018 7th Electronic System-Integration Technology Conference (ESTC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Integration with Light\",\"authors\":\"G. Arutinov, M. Giesbers, S. V. W. V. Doorn, F. Chiappini, R. Kusters, J. V. D. Brand\",\"doi\":\"10.1109/ESTC.2018.8546477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the use of Laser-induced Forward Transfer (LIFT) technology for printing of multilayer flexible circuitries and the fabrication of micro-bumps for flip-chip bonding of packaged LEDs and bare die microcomponents. Bonding of passive and functional surface mount devices (SMD) on low-temperature polyethylene terephthalate (PET) foils have been demonstrated using two selective bonding techniques. Firstly, using a high intensity near-infrared (NIR) lamp, a bare die NFC chip was bonded on micro-bumps formed with LIFT printed isotropic conductive adhesive (ICA) within less than a minute. Secondly, using a high intensity Xenon lamp, passive components and packaged LEDs were bonded within 5 seconds on microbumps formed with conventional Sn–Ag–Cu (SAC) lead-free alloys. In the both cases, due to selective light absorption, a limited temperature increase was observed in the PET substrates allowing successful bonding of components onto the delicate polyethylene foil substrates using conventional interconnect materials.\",\"PeriodicalId\":198238,\"journal\":{\"name\":\"2018 7th Electronic System-Integration Technology Conference (ESTC)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Electronic System-Integration Technology Conference (ESTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTC.2018.8546477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Electronic System-Integration Technology Conference (ESTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2018.8546477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文报道了利用激光诱导正向转移(LIFT)技术印刷多层柔性电路和制造用于封装led和裸模微元件倒装键合的微凸点。采用两种选择性键合技术在低温聚对苯二甲酸乙二醇酯(PET)箔上进行了无源和功能表面贴装器件(SMD)的键合。首先,利用高强度近红外(NIR)灯,在不到1分钟的时间内,将裸模NFC芯片粘接在LIFT印刷各向同性导电胶(ICA)形成的微凸起上。其次,使用高强度氙灯,在5秒内将无源元件和封装的led粘合在由传统Sn-Ag-Cu (SAC)无铅合金形成的微凸起上。在这两种情况下,由于选择性光吸收,在PET衬底中观察到有限的温度升高,允许使用传统互连材料将组件成功地粘合到精致的聚乙烯箔衬底上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration with Light
This paper reports the use of Laser-induced Forward Transfer (LIFT) technology for printing of multilayer flexible circuitries and the fabrication of micro-bumps for flip-chip bonding of packaged LEDs and bare die microcomponents. Bonding of passive and functional surface mount devices (SMD) on low-temperature polyethylene terephthalate (PET) foils have been demonstrated using two selective bonding techniques. Firstly, using a high intensity near-infrared (NIR) lamp, a bare die NFC chip was bonded on micro-bumps formed with LIFT printed isotropic conductive adhesive (ICA) within less than a minute. Secondly, using a high intensity Xenon lamp, passive components and packaged LEDs were bonded within 5 seconds on microbumps formed with conventional Sn–Ag–Cu (SAC) lead-free alloys. In the both cases, due to selective light absorption, a limited temperature increase was observed in the PET substrates allowing successful bonding of components onto the delicate polyethylene foil substrates using conventional interconnect materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信