关于回归入门课程中最小二乘估计的推导

M. Inlow
{"title":"关于回归入门课程中最小二乘估计的推导","authors":"M. Inlow","doi":"10.37119/jpss2022.v20i1.506","DOIUrl":null,"url":null,"abstract":"Introductory regression books typically begin their derivation of the least squares matrix estimation formula by considering the simple linear regression model. We suggest beginning with the zero-intercept model which has advantages. We provide two examples of this approach, one of which is a new, non-calculus derivation using the Cauchy-Schwarz inequality. \n ","PeriodicalId":161562,"journal":{"name":"Journal of Probability and Statistical Science","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Deriving the Least Squares Estimates in Introductory Regression Courses\",\"authors\":\"M. Inlow\",\"doi\":\"10.37119/jpss2022.v20i1.506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introductory regression books typically begin their derivation of the least squares matrix estimation formula by considering the simple linear regression model. We suggest beginning with the zero-intercept model which has advantages. We provide two examples of this approach, one of which is a new, non-calculus derivation using the Cauchy-Schwarz inequality. \\n \",\"PeriodicalId\":161562,\"journal\":{\"name\":\"Journal of Probability and Statistical Science\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Probability and Statistical Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37119/jpss2022.v20i1.506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37119/jpss2022.v20i1.506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍回归的书籍通常通过考虑简单的线性回归模型开始推导最小二乘矩阵估计公式。我们建议从有优势的零截距模型开始。我们提供了这种方法的两个例子,其中一个是使用Cauchy-Schwarz不等式的一个新的非微积分推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Deriving the Least Squares Estimates in Introductory Regression Courses
Introductory regression books typically begin their derivation of the least squares matrix estimation formula by considering the simple linear regression model. We suggest beginning with the zero-intercept model which has advantages. We provide two examples of this approach, one of which is a new, non-calculus derivation using the Cauchy-Schwarz inequality.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信