改进了D*的分析

C. Tovey, Sam Greenberg, Sven Koenig
{"title":"改进了D*的分析","authors":"C. Tovey, Sam Greenberg, Sven Koenig","doi":"10.1109/ROBOT.2003.1242111","DOIUrl":null,"url":null,"abstract":"D* is a planning method that always routes a robot in initially unknown terrain from its current location to a given goal location along a shortest presumed unblocked path. The robot moves along the path until it discovers new obstacles and then repeats the procedure. D* has been used on a large number of robots. It is therefore important to analyze the resulting travel distance. Previously, there has been only one analysis of D*, and it has two shortcomings. First, to prove the lower bound, it uses a physically unrealistic example graph which has distances that do not correspond to distances on a real map. We show that the lower bound is not smaller for grids, the kind of map-based graph on which D* is usually used. Second, there is a large gap between the upper and lower bounds on the travel distance. We considerably reduce this gap by decreasing the upper bound on arbitrary graphs, including grids. To summarize, we provide new, substantially tighter bounds on the travel distance of D* on grids, thus providing a realistic analysis for the way D* is actually used.","PeriodicalId":315346,"journal":{"name":"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Improved analysis of D*\",\"authors\":\"C. Tovey, Sam Greenberg, Sven Koenig\",\"doi\":\"10.1109/ROBOT.2003.1242111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"D* is a planning method that always routes a robot in initially unknown terrain from its current location to a given goal location along a shortest presumed unblocked path. The robot moves along the path until it discovers new obstacles and then repeats the procedure. D* has been used on a large number of robots. It is therefore important to analyze the resulting travel distance. Previously, there has been only one analysis of D*, and it has two shortcomings. First, to prove the lower bound, it uses a physically unrealistic example graph which has distances that do not correspond to distances on a real map. We show that the lower bound is not smaller for grids, the kind of map-based graph on which D* is usually used. Second, there is a large gap between the upper and lower bounds on the travel distance. We considerably reduce this gap by decreasing the upper bound on arbitrary graphs, including grids. To summarize, we provide new, substantially tighter bounds on the travel distance of D* on grids, thus providing a realistic analysis for the way D* is actually used.\",\"PeriodicalId\":315346,\"journal\":{\"name\":\"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2003.1242111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2003.1242111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

D*是一种规划方法,它总是将机器人在最初未知的地形中从当前位置沿着假定的最短无阻塞路径路由到给定的目标位置。机器人沿着路径移动,直到发现新的障碍物,然后重复这一过程。D*已在大量机器人上使用。因此,分析由此产生的行进距离是很重要的。在此之前,对D*的分析只有一个,它有两个缺点。首先,为了证明下界,它使用了一个物理上不现实的示例图,该示例图的距离与真实地图上的距离不对应。我们证明了网格的下界并不小,网格是一种通常使用D*的基于映射的图。二是出行距离的上界和下界差距较大。通过减小任意图(包括网格)的上界,我们大大减小了这一差距。总之,我们为D*在网格上的移动距离提供了新的、实质上更严格的界限,从而为D*的实际使用方式提供了一个现实的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved analysis of D*
D* is a planning method that always routes a robot in initially unknown terrain from its current location to a given goal location along a shortest presumed unblocked path. The robot moves along the path until it discovers new obstacles and then repeats the procedure. D* has been used on a large number of robots. It is therefore important to analyze the resulting travel distance. Previously, there has been only one analysis of D*, and it has two shortcomings. First, to prove the lower bound, it uses a physically unrealistic example graph which has distances that do not correspond to distances on a real map. We show that the lower bound is not smaller for grids, the kind of map-based graph on which D* is usually used. Second, there is a large gap between the upper and lower bounds on the travel distance. We considerably reduce this gap by decreasing the upper bound on arbitrary graphs, including grids. To summarize, we provide new, substantially tighter bounds on the travel distance of D* on grids, thus providing a realistic analysis for the way D* is actually used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信