基于改进YOLOv7的树种识别方法

Boyu Hu, Minling Zhu, Lei Chen, Lei Huang, Ping Chen, M. He
{"title":"基于改进YOLOv7的树种识别方法","authors":"Boyu Hu, Minling Zhu, Lei Chen, Lei Huang, Ping Chen, M. He","doi":"10.1109/ccis57298.2022.10016392","DOIUrl":null,"url":null,"abstract":"The paper presents a natural tree species recognition methods based on YOLOv7. We propose a new small target detection layer based on the YOLOv7 network, use the improved Mosaic-8, and introduce the attention mechanism. On the basis of not affecting the detection speed of YOLOv7, we improve the detection accuracy. Experiments show that the method has stronger learning ability, and accuracy than other algorithms under the same conditions.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"33 4 Pt 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tree species identification method based on improved YOLOv7\",\"authors\":\"Boyu Hu, Minling Zhu, Lei Chen, Lei Huang, Ping Chen, M. He\",\"doi\":\"10.1109/ccis57298.2022.10016392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a natural tree species recognition methods based on YOLOv7. We propose a new small target detection layer based on the YOLOv7 network, use the improved Mosaic-8, and introduce the attention mechanism. On the basis of not affecting the detection speed of YOLOv7, we improve the detection accuracy. Experiments show that the method has stronger learning ability, and accuracy than other algorithms under the same conditions.\",\"PeriodicalId\":374660,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"33 4 Pt 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ccis57298.2022.10016392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccis57298.2022.10016392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于YOLOv7的自然树种识别方法。在YOLOv7网络的基础上提出了一种新的小目标检测层,采用改进的Mosaic-8,并引入了注意机制。在不影响YOLOv7检测速度的基础上,提高了检测精度。实验表明,在相同条件下,该方法具有较强的学习能力和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tree species identification method based on improved YOLOv7
The paper presents a natural tree species recognition methods based on YOLOv7. We propose a new small target detection layer based on the YOLOv7 network, use the improved Mosaic-8, and introduce the attention mechanism. On the basis of not affecting the detection speed of YOLOv7, we improve the detection accuracy. Experiments show that the method has stronger learning ability, and accuracy than other algorithms under the same conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信