视频中实时运动物体跟踪

A. M. Kodjo, Yang Jinhua
{"title":"视频中实时运动物体跟踪","authors":"A. M. Kodjo, Yang Jinhua","doi":"10.1109/ICOOM.2012.6316342","DOIUrl":null,"url":null,"abstract":"Identifying moving objects from a video sequence is a fundamental and critical task in many computer vision applications. After the images are captured they must be processed and then sent to the server. This paper describes an implementation of a real time object tracking system in a video. Real tracking is achieved using a simple and fast motion detection method based on frame substation. The image processing algorithm is explained. Experimental results shown that any kind of moving object can be detected under unconstrained scenes.","PeriodicalId":129625,"journal":{"name":"2012 International Conference on Optoelectronics and Microelectronics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Real-time moving object tracking in video\",\"authors\":\"A. M. Kodjo, Yang Jinhua\",\"doi\":\"10.1109/ICOOM.2012.6316342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying moving objects from a video sequence is a fundamental and critical task in many computer vision applications. After the images are captured they must be processed and then sent to the server. This paper describes an implementation of a real time object tracking system in a video. Real tracking is achieved using a simple and fast motion detection method based on frame substation. The image processing algorithm is explained. Experimental results shown that any kind of moving object can be detected under unconstrained scenes.\",\"PeriodicalId\":129625,\"journal\":{\"name\":\"2012 International Conference on Optoelectronics and Microelectronics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Optoelectronics and Microelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOOM.2012.6316342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Optoelectronics and Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOOM.2012.6316342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在许多计算机视觉应用中,从视频序列中识别运动物体是一项基本和关键的任务。捕获图像后,必须对其进行处理,然后将其发送到服务器。本文介绍了一个视频中实时目标跟踪系统的实现。采用一种简单快速的基于帧变电所的运动检测方法实现了实时跟踪。说明了图像处理算法。实验结果表明,在不受约束的场景下,可以检测到任何类型的运动物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time moving object tracking in video
Identifying moving objects from a video sequence is a fundamental and critical task in many computer vision applications. After the images are captured they must be processed and then sent to the server. This paper describes an implementation of a real time object tracking system in a video. Real tracking is achieved using a simple and fast motion detection method based on frame substation. The image processing algorithm is explained. Experimental results shown that any kind of moving object can be detected under unconstrained scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信