钢琴精灵

Chris Donahue, Ian Simon, S. Dieleman
{"title":"钢琴精灵","authors":"Chris Donahue, Ian Simon, S. Dieleman","doi":"10.1145/3301275.3302288","DOIUrl":null,"url":null,"abstract":"We present Piano Genie, an intelligent controller which allows non-musicians to improvise on the piano. With Piano Genie, a user performs on a simple interface with eight buttons, and their performance is decoded into the space of plausible piano music in real time. To learn a suitable mapping procedure for this problem, we train recurrent neural network autoencoders with discrete bottlenecks: an encoder learns an appropriate sequence of buttons corresponding to a piano piece, and a decoder learns to map this sequence back to the original piece. During performance, we substitute a user's input for the encoder output, and play the decoder's prediction each time the user presses a button. To improve the intuitiveness of Piano Genie's performance behavior, we impose musically meaningful constraints over the encoder's outputs.","PeriodicalId":153096,"journal":{"name":"Proceedings of the 24th International Conference on Intelligent User Interfaces","volume":"29 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Piano Genie\",\"authors\":\"Chris Donahue, Ian Simon, S. Dieleman\",\"doi\":\"10.1145/3301275.3302288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Piano Genie, an intelligent controller which allows non-musicians to improvise on the piano. With Piano Genie, a user performs on a simple interface with eight buttons, and their performance is decoded into the space of plausible piano music in real time. To learn a suitable mapping procedure for this problem, we train recurrent neural network autoencoders with discrete bottlenecks: an encoder learns an appropriate sequence of buttons corresponding to a piano piece, and a decoder learns to map this sequence back to the original piece. During performance, we substitute a user's input for the encoder output, and play the decoder's prediction each time the user presses a button. To improve the intuitiveness of Piano Genie's performance behavior, we impose musically meaningful constraints over the encoder's outputs.\",\"PeriodicalId\":153096,\"journal\":{\"name\":\"Proceedings of the 24th International Conference on Intelligent User Interfaces\",\"volume\":\"29 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th International Conference on Intelligent User Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3301275.3302288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301275.3302288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

我们提出钢琴精灵,一个智能控制器,允许非音乐家即兴演奏钢琴。使用Piano Genie,用户可以在一个简单的界面上用八个按钮进行表演,他们的表演被实时解码成逼真的钢琴曲空间。为了学习适合这个问题的映射过程,我们训练具有离散瓶颈的循环神经网络自编码器:编码器学习对应于钢琴曲目的适当按钮序列,解码器学习将该序列映射回原始曲目。在执行过程中,我们将用户的输入替换为编码器的输出,并在每次用户按下按钮时播放解码器的预测。为了提高钢琴精灵表演行为的直观性,我们对编码器的输出施加了音乐上有意义的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piano Genie
We present Piano Genie, an intelligent controller which allows non-musicians to improvise on the piano. With Piano Genie, a user performs on a simple interface with eight buttons, and their performance is decoded into the space of plausible piano music in real time. To learn a suitable mapping procedure for this problem, we train recurrent neural network autoencoders with discrete bottlenecks: an encoder learns an appropriate sequence of buttons corresponding to a piano piece, and a decoder learns to map this sequence back to the original piece. During performance, we substitute a user's input for the encoder output, and play the decoder's prediction each time the user presses a button. To improve the intuitiveness of Piano Genie's performance behavior, we impose musically meaningful constraints over the encoder's outputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信