消除并发性以实现快速功能验证

S. Longfield, R. Manohar
{"title":"消除并发性以实现快速功能验证","authors":"S. Longfield, R. Manohar","doi":"10.1109/ICCAD.2014.7001371","DOIUrl":null,"url":null,"abstract":"VLSI systems are commonly specified using sequential executable functional specifications, but implemented in a highly concurrent manner. Alhough the methods to transform between the sequential specification and concurrent implementation have been well-studied, there are still substantial difficulties in verifying that the concurrent implementation corresponds to the sequential specification after low-level optimization. The majority of methods for doing this verification have focused on strong semantic models for reasoning about systems and their specifications, but these models can add significant unnecessary complexity. In this paper, we explore a weak but effective method for reasoning about implementation relations. We show how a sequential embedding of a concurrent program can be generated, and how that embedding can be used to dramatically reduce the reachable state space of the verification problem while maintaining the semantic model of interest.","PeriodicalId":426584,"journal":{"name":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Removing concurrency for rapid functional verification\",\"authors\":\"S. Longfield, R. Manohar\",\"doi\":\"10.1109/ICCAD.2014.7001371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"VLSI systems are commonly specified using sequential executable functional specifications, but implemented in a highly concurrent manner. Alhough the methods to transform between the sequential specification and concurrent implementation have been well-studied, there are still substantial difficulties in verifying that the concurrent implementation corresponds to the sequential specification after low-level optimization. The majority of methods for doing this verification have focused on strong semantic models for reasoning about systems and their specifications, but these models can add significant unnecessary complexity. In this paper, we explore a weak but effective method for reasoning about implementation relations. We show how a sequential embedding of a concurrent program can be generated, and how that embedding can be used to dramatically reduce the reachable state space of the verification problem while maintaining the semantic model of interest.\",\"PeriodicalId\":426584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2014.7001371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2014.7001371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

VLSI系统通常使用顺序可执行的功能规范来指定,但以高度并发的方式实现。虽然在顺序规范和并发实现之间的转换方法已经得到了很好的研究,但是在底层优化之后,要验证并发实现是否与顺序规范相对应,仍然存在很大的困难。进行这种验证的大多数方法都集中在用于对系统及其规范进行推理的强语义模型上,但是这些模型会增加大量不必要的复杂性。本文探讨了一种弱而有效的实现关系推理方法。我们展示了如何生成并发程序的顺序嵌入,以及如何使用该嵌入来显著减少验证问题的可达状态空间,同时保持感兴趣的语义模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Removing concurrency for rapid functional verification
VLSI systems are commonly specified using sequential executable functional specifications, but implemented in a highly concurrent manner. Alhough the methods to transform between the sequential specification and concurrent implementation have been well-studied, there are still substantial difficulties in verifying that the concurrent implementation corresponds to the sequential specification after low-level optimization. The majority of methods for doing this verification have focused on strong semantic models for reasoning about systems and their specifications, but these models can add significant unnecessary complexity. In this paper, we explore a weak but effective method for reasoning about implementation relations. We show how a sequential embedding of a concurrent program can be generated, and how that embedding can be used to dramatically reduce the reachable state space of the verification problem while maintaining the semantic model of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信