B. Ivira, P. Benech, F. Ndagijimana, R. Fillit, G. Parat, P. Ancey
{"title":"固态谐振器可靠性评估的热表征","authors":"B. Ivira, P. Benech, F. Ndagijimana, R. Fillit, G. Parat, P. Ancey","doi":"10.1109/FREQ.2006.275359","DOIUrl":null,"url":null,"abstract":"This paper deals with the temperature impact on electrical characteristics of thin film acoustic resonators. Consequences of excessive temperature due to self-heating and harsh environment are investigated. For self-heating aspects, an RF power bench coupled to an infrared camera with a spatial resolution as good as 2 mu/pixels gives us accurate thermal images of structures while submitted to high power. In addition, drifts or resonances in respect to power are properly measured. In a different way, resonator behavior, under small signal, but from low to high temperature is determined above wireless specifications. Complementarily to RF characterizations, a 1-D modeling based on transmission line equations is modified and a way for increasing thermal stability of resonators is proposed","PeriodicalId":445945,"journal":{"name":"2006 IEEE International Frequency Control Symposium and Exposition","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Thermal Characterization for Reliability Assessment of Solidly Mounted Resonators\",\"authors\":\"B. Ivira, P. Benech, F. Ndagijimana, R. Fillit, G. Parat, P. Ancey\",\"doi\":\"10.1109/FREQ.2006.275359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the temperature impact on electrical characteristics of thin film acoustic resonators. Consequences of excessive temperature due to self-heating and harsh environment are investigated. For self-heating aspects, an RF power bench coupled to an infrared camera with a spatial resolution as good as 2 mu/pixels gives us accurate thermal images of structures while submitted to high power. In addition, drifts or resonances in respect to power are properly measured. In a different way, resonator behavior, under small signal, but from low to high temperature is determined above wireless specifications. Complementarily to RF characterizations, a 1-D modeling based on transmission line equations is modified and a way for increasing thermal stability of resonators is proposed\",\"PeriodicalId\":445945,\"journal\":{\"name\":\"2006 IEEE International Frequency Control Symposium and Exposition\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Frequency Control Symposium and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2006.275359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Frequency Control Symposium and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2006.275359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal Characterization for Reliability Assessment of Solidly Mounted Resonators
This paper deals with the temperature impact on electrical characteristics of thin film acoustic resonators. Consequences of excessive temperature due to self-heating and harsh environment are investigated. For self-heating aspects, an RF power bench coupled to an infrared camera with a spatial resolution as good as 2 mu/pixels gives us accurate thermal images of structures while submitted to high power. In addition, drifts or resonances in respect to power are properly measured. In a different way, resonator behavior, under small signal, but from low to high temperature is determined above wireless specifications. Complementarily to RF characterizations, a 1-D modeling based on transmission line equations is modified and a way for increasing thermal stability of resonators is proposed