阈值电压设计在部分耗尽SOI和大块CMOS晶体管之间不兼容

H. van Meer, J. Lyu, S. Kubicek, L. Geenen, K. De Meyer
{"title":"阈值电压设计在部分耗尽SOI和大块CMOS晶体管之间不兼容","authors":"H. van Meer, J. Lyu, S. Kubicek, L. Geenen, K. De Meyer","doi":"10.1109/SOI.1999.819844","DOIUrl":null,"url":null,"abstract":"Summary form only given. Silicon-on-insulator (SOI) CMOS technology has proven to be compatible with bulk CMOS in many ways, ranging from circuit design and layout to wafer processing. In addition, partially-depleted (PD) SOI technology has been suggested as a method for achieving a high circuit performance at low supply voltage and low power (Jacobs et al, 1998). Unlike fully-depleted (FD) SOI transistors, PD SOI devices have the advantage of a threshold voltage V/sub T/ which is insensitive to variations in the silicon thickness uniformity. Based on device physics, the long-channel threshold voltage V/sub T/ is equal to the V/sub T/ of the bulk transistor as long as the channel doping concentrations are equal. Therefore, PD SOI CMOS design appears to be very similar to conventional bulk. Often, the design of a PD SOI CMOS technology is started from a present and well-known baseline bulk CMOS technology. During device fabrication, it is assumed, however, that the diffusivity of the channel dopants in the vertical direction in SOI is similar to bulk, which is fundamentally incorrect. In order to investigate the threshold voltage difference between PD SOI and bulk, SOI CMOS transistors have been fabricated on BESOI wafers with buried oxide and silicon layer thicknesses of 350 and 125 nm, respectively. In order to obtain a straight comparison with the bulk CMOS technology, each SOI wafer has a bulk counterpart for which the process conditions have been exactly the same.","PeriodicalId":117832,"journal":{"name":"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Threshold voltage design incompatibility between partially-depleted SOI and bulk CMOS transistors\",\"authors\":\"H. van Meer, J. Lyu, S. Kubicek, L. Geenen, K. De Meyer\",\"doi\":\"10.1109/SOI.1999.819844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Silicon-on-insulator (SOI) CMOS technology has proven to be compatible with bulk CMOS in many ways, ranging from circuit design and layout to wafer processing. In addition, partially-depleted (PD) SOI technology has been suggested as a method for achieving a high circuit performance at low supply voltage and low power (Jacobs et al, 1998). Unlike fully-depleted (FD) SOI transistors, PD SOI devices have the advantage of a threshold voltage V/sub T/ which is insensitive to variations in the silicon thickness uniformity. Based on device physics, the long-channel threshold voltage V/sub T/ is equal to the V/sub T/ of the bulk transistor as long as the channel doping concentrations are equal. Therefore, PD SOI CMOS design appears to be very similar to conventional bulk. Often, the design of a PD SOI CMOS technology is started from a present and well-known baseline bulk CMOS technology. During device fabrication, it is assumed, however, that the diffusivity of the channel dopants in the vertical direction in SOI is similar to bulk, which is fundamentally incorrect. In order to investigate the threshold voltage difference between PD SOI and bulk, SOI CMOS transistors have been fabricated on BESOI wafers with buried oxide and silicon layer thicknesses of 350 and 125 nm, respectively. In order to obtain a straight comparison with the bulk CMOS technology, each SOI wafer has a bulk counterpart for which the process conditions have been exactly the same.\",\"PeriodicalId\":117832,\"journal\":{\"name\":\"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOI.1999.819844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.1999.819844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

只提供摘要形式。绝缘体上硅(SOI) CMOS技术已被证明在许多方面与体CMOS兼容,从电路设计和布局到晶圆加工。此外,部分耗尽(PD) SOI技术被认为是在低电源电压和低功率下实现高电路性能的一种方法(Jacobs等人,1998)。与完全耗尽(FD) SOI晶体管不同,PD SOI器件具有阈值电压V/sub T/的优势,对硅厚度均匀性的变化不敏感。根据器件物理原理,只要通道掺杂浓度相等,长通道阈值电压V/sub T/等于本体晶体管的V/sub T/。因此,PD SOI CMOS设计看起来与传统的体芯片非常相似。通常,PD SOI CMOS技术的设计是从目前已知的基线批量CMOS技术开始的。然而,在器件制造过程中,假设SOI中沟道掺杂剂在垂直方向上的扩散率与体相似,这从根本上是不正确的。为了研究PD SOI和本体之间的阈值电压差异,在埋地氧化层厚度为350 nm和硅层厚度分别为125 nm的BESOI晶圆上制备了SOI CMOS晶体管。为了获得与体CMOS技术的直接比较,每个SOI晶圆都有一个体对应,其工艺条件完全相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Threshold voltage design incompatibility between partially-depleted SOI and bulk CMOS transistors
Summary form only given. Silicon-on-insulator (SOI) CMOS technology has proven to be compatible with bulk CMOS in many ways, ranging from circuit design and layout to wafer processing. In addition, partially-depleted (PD) SOI technology has been suggested as a method for achieving a high circuit performance at low supply voltage and low power (Jacobs et al, 1998). Unlike fully-depleted (FD) SOI transistors, PD SOI devices have the advantage of a threshold voltage V/sub T/ which is insensitive to variations in the silicon thickness uniformity. Based on device physics, the long-channel threshold voltage V/sub T/ is equal to the V/sub T/ of the bulk transistor as long as the channel doping concentrations are equal. Therefore, PD SOI CMOS design appears to be very similar to conventional bulk. Often, the design of a PD SOI CMOS technology is started from a present and well-known baseline bulk CMOS technology. During device fabrication, it is assumed, however, that the diffusivity of the channel dopants in the vertical direction in SOI is similar to bulk, which is fundamentally incorrect. In order to investigate the threshold voltage difference between PD SOI and bulk, SOI CMOS transistors have been fabricated on BESOI wafers with buried oxide and silicon layer thicknesses of 350 and 125 nm, respectively. In order to obtain a straight comparison with the bulk CMOS technology, each SOI wafer has a bulk counterpart for which the process conditions have been exactly the same.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信