带惩罚的安全计算摊销

R. Kumaresan, Iddo Bentov
{"title":"带惩罚的安全计算摊销","authors":"R. Kumaresan, Iddo Bentov","doi":"10.1145/2976749.2978424","DOIUrl":null,"url":null,"abstract":"Motivated by the impossibility of achieving fairness in secure computation [Cleve, STOC 1986], recent works study a model of fairness in which an adversarial party that aborts on receiving output is forced to pay a mutually predefined monetary penalty to every other party that did not receive the output. These works show how to design protocols for secure computation with penalties that guarantees that either fairness is guaranteed or that each honest party obtains a monetary penalty from the adversary. Protocols for this task are typically designed in an hybrid model where parties have access to a \"claim-or-refund\" transaction functionality denote FCR*. In this work, we obtain improvements on the efficiency of these constructions by amortizing the cost over multiple executions of secure computation with penalties. More precisely, for computational security parameter λ, we design a protocol that implements l = poly}(λ) instances of secure computation with penalties where the total number of calls to FCR* is independent of l.","PeriodicalId":432261,"journal":{"name":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":"{\"title\":\"Amortizing Secure Computation with Penalties\",\"authors\":\"R. Kumaresan, Iddo Bentov\",\"doi\":\"10.1145/2976749.2978424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the impossibility of achieving fairness in secure computation [Cleve, STOC 1986], recent works study a model of fairness in which an adversarial party that aborts on receiving output is forced to pay a mutually predefined monetary penalty to every other party that did not receive the output. These works show how to design protocols for secure computation with penalties that guarantees that either fairness is guaranteed or that each honest party obtains a monetary penalty from the adversary. Protocols for this task are typically designed in an hybrid model where parties have access to a \\\"claim-or-refund\\\" transaction functionality denote FCR*. In this work, we obtain improvements on the efficiency of these constructions by amortizing the cost over multiple executions of secure computation with penalties. More precisely, for computational security parameter λ, we design a protocol that implements l = poly}(λ) instances of secure computation with penalties where the total number of calls to FCR* is independent of l.\",\"PeriodicalId\":432261,\"journal\":{\"name\":\"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2976749.2978424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2976749.2978424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

摘要

由于在安全计算中不可能实现公平[Cleve, STOC 1986],最近的作品研究了一种公平模型,在这种模型中,放弃接收输出的对抗方被迫向未接收输出的其他各方支付双方预定义的货币罚款。这些工作展示了如何设计带有惩罚的安全计算协议,以确保公平得到保证,或者每个诚实的一方从对手那里获得金钱惩罚。用于此任务的协议通常设计在混合模型中,其中各方可以访问标记为FCR*的“索赔或退款”事务功能。在这项工作中,我们通过平摊安全计算的多次执行的成本和惩罚来提高这些结构的效率。更准确地说,对于计算安全参数λ,我们设计了一个协议,该协议实现了l = poly}(λ)安全计算实例,其中对FCR*的调用总数与l无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amortizing Secure Computation with Penalties
Motivated by the impossibility of achieving fairness in secure computation [Cleve, STOC 1986], recent works study a model of fairness in which an adversarial party that aborts on receiving output is forced to pay a mutually predefined monetary penalty to every other party that did not receive the output. These works show how to design protocols for secure computation with penalties that guarantees that either fairness is guaranteed or that each honest party obtains a monetary penalty from the adversary. Protocols for this task are typically designed in an hybrid model where parties have access to a "claim-or-refund" transaction functionality denote FCR*. In this work, we obtain improvements on the efficiency of these constructions by amortizing the cost over multiple executions of secure computation with penalties. More precisely, for computational security parameter λ, we design a protocol that implements l = poly}(λ) instances of secure computation with penalties where the total number of calls to FCR* is independent of l.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信