基于脉冲无线电超宽带收发器能量检测的非线性信号处理技术

H. Nie, Z. Chen, Zhimeng Xu
{"title":"基于脉冲无线电超宽带收发器能量检测的非线性信号处理技术","authors":"H. Nie, Z. Chen, Zhimeng Xu","doi":"10.1109/ICUWB.2012.6340460","DOIUrl":null,"url":null,"abstract":"Presently most signal processing technologies employed in impulse radio UWB transceivers are straightforward derivatives of those designed for conventional wireless transceivers. They appear not to take full advantage of some special features offered by the impulse radio UWB transceivers, such as ultra-wide bandwidth and very short duration pulses. To move beyond this shortcoming, in this paper, we have reviewed our recent innovations in using nonlinear signal processing technologies, in particular, the Teager-Kaiser operator and the square law device, in energy detection based UWB transceivers. It is found that nonlinear signal processing technologies can mitigate not only the destructive effects caused a narrowband interference but also those caused wideband noises, and hence can significantly improve the bit-error-rate performance of energy detection based UWB transceivers no matter when a narrowband interference is present or not. In summary, use of nonlinear signal processing technologies is a groundbreaking innovation and presents a potentially new horizon for research and development of UWB systems.","PeriodicalId":260071,"journal":{"name":"2012 IEEE International Conference on Ultra-Wideband","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nonlinear signal processing technologies for energy detection based impulse radio UWB transceivers\",\"authors\":\"H. Nie, Z. Chen, Zhimeng Xu\",\"doi\":\"10.1109/ICUWB.2012.6340460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presently most signal processing technologies employed in impulse radio UWB transceivers are straightforward derivatives of those designed for conventional wireless transceivers. They appear not to take full advantage of some special features offered by the impulse radio UWB transceivers, such as ultra-wide bandwidth and very short duration pulses. To move beyond this shortcoming, in this paper, we have reviewed our recent innovations in using nonlinear signal processing technologies, in particular, the Teager-Kaiser operator and the square law device, in energy detection based UWB transceivers. It is found that nonlinear signal processing technologies can mitigate not only the destructive effects caused a narrowband interference but also those caused wideband noises, and hence can significantly improve the bit-error-rate performance of energy detection based UWB transceivers no matter when a narrowband interference is present or not. In summary, use of nonlinear signal processing technologies is a groundbreaking innovation and presents a potentially new horizon for research and development of UWB systems.\",\"PeriodicalId\":260071,\"journal\":{\"name\":\"2012 IEEE International Conference on Ultra-Wideband\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Ultra-Wideband\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUWB.2012.6340460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Ultra-Wideband","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUWB.2012.6340460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

目前,脉冲无线电超宽带收发器中使用的大多数信号处理技术都是传统无线收发器设计的直接衍生物。它们似乎没有充分利用脉冲无线电超宽带收发器提供的一些特殊功能,例如超宽带宽和极短持续脉冲。为了克服这一缺点,在本文中,我们回顾了我们最近在使用非线性信号处理技术方面的创新,特别是Teager-Kaiser算子和平方律装置,用于基于超宽带收发器的能量检测。研究发现,非线性信号处理技术不仅可以减轻窄带干扰带来的破坏性影响,而且可以减轻宽带噪声带来的破坏性影响,因此无论是否存在窄带干扰,都可以显著提高基于能量检测的超宽带收发器的误码率性能。综上所述,非线性信号处理技术的使用是一项突破性的创新,为超宽带系统的研究和发展提供了一个潜在的新前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear signal processing technologies for energy detection based impulse radio UWB transceivers
Presently most signal processing technologies employed in impulse radio UWB transceivers are straightforward derivatives of those designed for conventional wireless transceivers. They appear not to take full advantage of some special features offered by the impulse radio UWB transceivers, such as ultra-wide bandwidth and very short duration pulses. To move beyond this shortcoming, in this paper, we have reviewed our recent innovations in using nonlinear signal processing technologies, in particular, the Teager-Kaiser operator and the square law device, in energy detection based UWB transceivers. It is found that nonlinear signal processing technologies can mitigate not only the destructive effects caused a narrowband interference but also those caused wideband noises, and hence can significantly improve the bit-error-rate performance of energy detection based UWB transceivers no matter when a narrowband interference is present or not. In summary, use of nonlinear signal processing technologies is a groundbreaking innovation and presents a potentially new horizon for research and development of UWB systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信