{"title":"生成和分析非常长的地址轨迹","authors":"A. Borg, R. Kessler, D. W. Wall","doi":"10.1145/325164.325153","DOIUrl":null,"url":null,"abstract":"Existing methods of generating and analyzing traces suffer from a variety of limitations, including complexity, inaccuracy, short length, inflexibility, or applicability only to CISC (complex-instruction-set-computer) machines. The authors use a trace-generation mechanism based on link-time code modification which is simple to use, generates accurate long traces of multiuser programs, runs on a RISC (reduced-instruction-set-computer) machine, and can be flexibly controlled. Accurate performance data for large second-level caches can be obtained by on-the-fly analysis of the traces. A comparison is made of the performance of systems with 512 K to 16 M second-level caches, and it is show that, for today's large programs, second-level caches of more than 4 MB may be unnecessary. It is also shown that set associativity in second-level caches of more than 1 MB does not significantly improve system performance. In addition, the experiments provide insights into first-level and second-level cache line size.<<ETX>>","PeriodicalId":297046,"journal":{"name":"[1990] Proceedings. The 17th Annual International Symposium on Computer Architecture","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"137","resultStr":"{\"title\":\"Generation and analysis of very long address traces\",\"authors\":\"A. Borg, R. Kessler, D. W. Wall\",\"doi\":\"10.1145/325164.325153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing methods of generating and analyzing traces suffer from a variety of limitations, including complexity, inaccuracy, short length, inflexibility, or applicability only to CISC (complex-instruction-set-computer) machines. The authors use a trace-generation mechanism based on link-time code modification which is simple to use, generates accurate long traces of multiuser programs, runs on a RISC (reduced-instruction-set-computer) machine, and can be flexibly controlled. Accurate performance data for large second-level caches can be obtained by on-the-fly analysis of the traces. A comparison is made of the performance of systems with 512 K to 16 M second-level caches, and it is show that, for today's large programs, second-level caches of more than 4 MB may be unnecessary. It is also shown that set associativity in second-level caches of more than 1 MB does not significantly improve system performance. In addition, the experiments provide insights into first-level and second-level cache line size.<<ETX>>\",\"PeriodicalId\":297046,\"journal\":{\"name\":\"[1990] Proceedings. The 17th Annual International Symposium on Computer Architecture\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"137\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings. The 17th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/325164.325153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. The 17th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/325164.325153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generation and analysis of very long address traces
Existing methods of generating and analyzing traces suffer from a variety of limitations, including complexity, inaccuracy, short length, inflexibility, or applicability only to CISC (complex-instruction-set-computer) machines. The authors use a trace-generation mechanism based on link-time code modification which is simple to use, generates accurate long traces of multiuser programs, runs on a RISC (reduced-instruction-set-computer) machine, and can be flexibly controlled. Accurate performance data for large second-level caches can be obtained by on-the-fly analysis of the traces. A comparison is made of the performance of systems with 512 K to 16 M second-level caches, and it is show that, for today's large programs, second-level caches of more than 4 MB may be unnecessary. It is also shown that set associativity in second-level caches of more than 1 MB does not significantly improve system performance. In addition, the experiments provide insights into first-level and second-level cache line size.<>