观点挖掘:特征工程仍然相关吗?

Md. Ataur Rahman, Puja Chakraborty
{"title":"观点挖掘:特征工程仍然相关吗?","authors":"Md. Ataur Rahman, Puja Chakraborty","doi":"10.1109/ICICT4SD50815.2021.9396874","DOIUrl":null,"url":null,"abstract":"This paper manifests the experimentation with sentiment polarity detection over Stanford's IMDB movie review dataset using a Support Vector Machine classifier (SVM). Our prime motivation was to find out the best possible combinations of classic features and preprocessing techniques for the classification of positive and negative opinions. We also explored two variants of kernels with numerous parameter settings for the classifier in the hope of getting the best SVM model. Our best model achieved an accuracy score of 85.45%. The results indicate that a model with a non-linear Radial Basis Function (RBF) kernel leads to the highest accuracy. The features that contributed the most are stemmed word n-grams.","PeriodicalId":239251,"journal":{"name":"2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD)","volume":"7 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Opinion Mining: Is Feature Engineering Still Relevant?\",\"authors\":\"Md. Ataur Rahman, Puja Chakraborty\",\"doi\":\"10.1109/ICICT4SD50815.2021.9396874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper manifests the experimentation with sentiment polarity detection over Stanford's IMDB movie review dataset using a Support Vector Machine classifier (SVM). Our prime motivation was to find out the best possible combinations of classic features and preprocessing techniques for the classification of positive and negative opinions. We also explored two variants of kernels with numerous parameter settings for the classifier in the hope of getting the best SVM model. Our best model achieved an accuracy score of 85.45%. The results indicate that a model with a non-linear Radial Basis Function (RBF) kernel leads to the highest accuracy. The features that contributed the most are stemmed word n-grams.\",\"PeriodicalId\":239251,\"journal\":{\"name\":\"2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD)\",\"volume\":\"7 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT4SD50815.2021.9396874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT4SD50815.2021.9396874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文展示了使用支持向量机分类器(SVM)对斯坦福大学IMDB电影评论数据集进行情感极性检测的实验。我们的主要动机是找出经典特征和预处理技术的最佳组合,以便对正面和负面意见进行分类。我们还为分类器探索了具有众多参数设置的核的两种变体,希望得到最好的SVM模型。我们最好的模型达到了85.45%的准确率。结果表明,采用非线性径向基函数(RBF)核的模型精度最高。贡献最多的特征是词干n-gram。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Opinion Mining: Is Feature Engineering Still Relevant?
This paper manifests the experimentation with sentiment polarity detection over Stanford's IMDB movie review dataset using a Support Vector Machine classifier (SVM). Our prime motivation was to find out the best possible combinations of classic features and preprocessing techniques for the classification of positive and negative opinions. We also explored two variants of kernels with numerous parameter settings for the classifier in the hope of getting the best SVM model. Our best model achieved an accuracy score of 85.45%. The results indicate that a model with a non-linear Radial Basis Function (RBF) kernel leads to the highest accuracy. The features that contributed the most are stemmed word n-grams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信