P. Chakraborty, A. Appaswamy, P. Saha, N. K. Jha, J. Cressler, H. Yasuda, B. Eklund, R. Wise
{"title":"pnp SiGe HBTs的混合模式应力退化机制","authors":"P. Chakraborty, A. Appaswamy, P. Saha, N. K. Jha, J. Cressler, H. Yasuda, B. Eklund, R. Wise","doi":"10.1109/IRPS.2009.5173228","DOIUrl":null,"url":null,"abstract":"An investigation of the high-voltage/high-current mixed-mode (M-M) stress-induced damage mechanisms of pnp silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) is presented. Different accelerated stress methods, including mixed-mode stress, reverse emitter-base (EB) stress, and forward collector plus reverse EB stress, were applied to pnp SiGe HBTs from a state-of-the-art complementary-SiGe BiCMOS process technology platform. The operative damage mechanism from the M-M stress method is identified. Experimental evidence of collector current change due to the M-M stress, and the experimental proof of the type of hot carriers (electrons vs. holes) responsible for the observed M-M stress damage are presented.","PeriodicalId":345860,"journal":{"name":"2009 IEEE International Reliability Physics Symposium","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Mixed-mode stress degradation mechanisms in pnp SiGe HBTs\",\"authors\":\"P. Chakraborty, A. Appaswamy, P. Saha, N. K. Jha, J. Cressler, H. Yasuda, B. Eklund, R. Wise\",\"doi\":\"10.1109/IRPS.2009.5173228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An investigation of the high-voltage/high-current mixed-mode (M-M) stress-induced damage mechanisms of pnp silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) is presented. Different accelerated stress methods, including mixed-mode stress, reverse emitter-base (EB) stress, and forward collector plus reverse EB stress, were applied to pnp SiGe HBTs from a state-of-the-art complementary-SiGe BiCMOS process technology platform. The operative damage mechanism from the M-M stress method is identified. Experimental evidence of collector current change due to the M-M stress, and the experimental proof of the type of hot carriers (electrons vs. holes) responsible for the observed M-M stress damage are presented.\",\"PeriodicalId\":345860,\"journal\":{\"name\":\"2009 IEEE International Reliability Physics Symposium\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Reliability Physics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.2009.5173228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2009.5173228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mixed-mode stress degradation mechanisms in pnp SiGe HBTs
An investigation of the high-voltage/high-current mixed-mode (M-M) stress-induced damage mechanisms of pnp silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) is presented. Different accelerated stress methods, including mixed-mode stress, reverse emitter-base (EB) stress, and forward collector plus reverse EB stress, were applied to pnp SiGe HBTs from a state-of-the-art complementary-SiGe BiCMOS process technology platform. The operative damage mechanism from the M-M stress method is identified. Experimental evidence of collector current change due to the M-M stress, and the experimental proof of the type of hot carriers (electrons vs. holes) responsible for the observed M-M stress damage are presented.