使用快速探索随机树的自适应扩展的可视路线导航

Heon-Cheol Lee, Seung-Hwan Lee, Doo-Jin Kim, Beomhee Lee
{"title":"使用快速探索随机树的自适应扩展的可视路线导航","authors":"Heon-Cheol Lee, Seung-Hwan Lee, Doo-Jin Kim, Beomhee Lee","doi":"10.1109/IROS.2010.5649741","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive and probabilistic extension of Rapidly-exploring Random Tree (RRT) for visual route navigation of a mobile robot. Using measurements from cameras and infrared range sensors, a temporary local map is built probabilistically with Gaussian processes and adaptively to the change of the route curvature. Based on the probabilistic map, RRT searches the most robust and efficient local path with the probability of collision, and the robot is controlled along the selected path. The performance of the proposed method was verified by reducing not only centering error and standard deviation in simulations but also travel time in real experiments.","PeriodicalId":420658,"journal":{"name":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Visual route navigation using an adaptive extension of Rapidly-exploring Random Trees\",\"authors\":\"Heon-Cheol Lee, Seung-Hwan Lee, Doo-Jin Kim, Beomhee Lee\",\"doi\":\"10.1109/IROS.2010.5649741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an adaptive and probabilistic extension of Rapidly-exploring Random Tree (RRT) for visual route navigation of a mobile robot. Using measurements from cameras and infrared range sensors, a temporary local map is built probabilistically with Gaussian processes and adaptively to the change of the route curvature. Based on the probabilistic map, RRT searches the most robust and efficient local path with the probability of collision, and the robot is controlled along the selected path. The performance of the proposed method was verified by reducing not only centering error and standard deviation in simulations but also travel time in real experiments.\",\"PeriodicalId\":420658,\"journal\":{\"name\":\"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2010.5649741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2010.5649741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于快速探索随机树的自适应概率扩展算法,用于移动机器人的视觉路径导航。利用相机和红外距离传感器的测量数据,利用高斯过程概率构建临时局部地图,并自适应路径曲率的变化。基于概率映射,基于碰撞概率搜索最鲁棒、最有效的局部路径,并沿所选路径控制机器人。仿真结果表明,该方法不仅减小了定心误差和标准偏差,而且减小了实际实验中的行程时间,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual route navigation using an adaptive extension of Rapidly-exploring Random Trees
This paper proposes an adaptive and probabilistic extension of Rapidly-exploring Random Tree (RRT) for visual route navigation of a mobile robot. Using measurements from cameras and infrared range sensors, a temporary local map is built probabilistically with Gaussian processes and adaptively to the change of the route curvature. Based on the probabilistic map, RRT searches the most robust and efficient local path with the probability of collision, and the robot is controlled along the selected path. The performance of the proposed method was verified by reducing not only centering error and standard deviation in simulations but also travel time in real experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信