P. Michaf, A. Vagaská, M. Gombár, A. Hošovský, J. Kmec
{"title":"铝阳极氧化过程中重要参数影响的监测","authors":"P. Michaf, A. Vagaská, M. Gombár, A. Hošovský, J. Kmec","doi":"10.1109/SAMI.2014.6822447","DOIUrl":null,"url":null,"abstract":"The paper deals with the possibilities of control the technological process of aluminium anodic oxidation using the Design of Experiments (DoE) and the higher order neural unit to monitor the influence of the significant parameters on the resulting AAO (anodic aluminium oxide) film thickness. It also compares the relationship between individual inputs factors and their mutual interactions on the AAO thickness at monitored current density of 1.00 A·dm-2 and 6.00 A·dm-2. The developed predicted model describes the influence of input factors on the final AAO thickness by cubic function and its reliability is 99.37 % at current density of 1 A·dm-2 and 99.47% at current density of 6 A·dm-2. The electrolyte temperature and the size of an applied voltage had the most important influence.","PeriodicalId":441172,"journal":{"name":"2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Monitoring of influence of significant parameters during anodizing of aluminium\",\"authors\":\"P. Michaf, A. Vagaská, M. Gombár, A. Hošovský, J. Kmec\",\"doi\":\"10.1109/SAMI.2014.6822447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the possibilities of control the technological process of aluminium anodic oxidation using the Design of Experiments (DoE) and the higher order neural unit to monitor the influence of the significant parameters on the resulting AAO (anodic aluminium oxide) film thickness. It also compares the relationship between individual inputs factors and their mutual interactions on the AAO thickness at monitored current density of 1.00 A·dm-2 and 6.00 A·dm-2. The developed predicted model describes the influence of input factors on the final AAO thickness by cubic function and its reliability is 99.37 % at current density of 1 A·dm-2 and 99.47% at current density of 6 A·dm-2. The electrolyte temperature and the size of an applied voltage had the most important influence.\",\"PeriodicalId\":441172,\"journal\":{\"name\":\"2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2014.6822447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2014.6822447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monitoring of influence of significant parameters during anodizing of aluminium
The paper deals with the possibilities of control the technological process of aluminium anodic oxidation using the Design of Experiments (DoE) and the higher order neural unit to monitor the influence of the significant parameters on the resulting AAO (anodic aluminium oxide) film thickness. It also compares the relationship between individual inputs factors and their mutual interactions on the AAO thickness at monitored current density of 1.00 A·dm-2 and 6.00 A·dm-2. The developed predicted model describes the influence of input factors on the final AAO thickness by cubic function and its reliability is 99.37 % at current density of 1 A·dm-2 and 99.47% at current density of 6 A·dm-2. The electrolyte temperature and the size of an applied voltage had the most important influence.