集成电路超薄背面-一个需要熟练样品制备的真正纳米级故障隔离机会的领域

C. Boit, J. Jatzkowski, F. Altmann, M. DiBattista, S. Silverman, G. Zwicker, N. Herfurth, E. Amini, J.-P. Seifert
{"title":"集成电路超薄背面-一个需要熟练样品制备的真正纳米级故障隔离机会的领域","authors":"C. Boit, J. Jatzkowski, F. Altmann, M. DiBattista, S. Silverman, G. Zwicker, N. Herfurth, E. Amini, J.-P. Seifert","doi":"10.1109/IPFA55383.2022.9915783","DOIUrl":null,"url":null,"abstract":"The backside approach of contactless fault isolation (CFI) was comfortable as long as it could be carried out with Near Infra-Red (NIR) optical techniques. But even with a solid immersion lens (SIL), the resolution was limited to ~180nm, corresponding to ca. 40nm node integrated circuit (IC) technologies. However, with failure analysis (FA) experience and circuit simulation, it was still successful down to 14 nm FinFET technology. There are several attempts to keep optical CFI competitive because the FA community has enormous experience to read and interpret the obtained signals. Two major strategies are out to save optical CFI for smaller nanoscale IC technologies: (1) shorter wavelength increases resolution by practically max. 2X, but then optical absorption is increasing by orders of magnitude so bulk silicon has to get very thin, and (2) sticking to NIR resolution and work with the signal mix coming from ca. 10 FETs inside the optical spot, requiring an increasing level of circuit and device knowledge involving big data and Artificial Intelligence/Machine Learning (AI/ML).Here, another way out will be presented: (3) fault isolation techniques with real nanoscale resolution like e-beam probing, backside nanoprobing and even near-field optical microscopy are possible if only the back surface of the IC is very close to the active device. This Ultra-Thin Silicon Back Surface (UTSBS) has already been explored to a certain extent. This work shows an overview about the results that are available and the still open field of opportunities. These techniques also support CFI in 3D systems. The sample preparation is very challenging as it has to get down very close to the device of interest but gives more degrees of freedom as only local planarity in a trench is required. No space for a SIL has to be created and the imaging or probing techniques have a long working distance.So, the ultra-thinning may be only necessary in local area, offering a number of preparation solutions consisting of mainly FIB trenching and laser etching. They can as well be composed of these techniques. It will also be presented how beneficial chemical mechanical polishing (CMP) can be.","PeriodicalId":378702,"journal":{"name":"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The IC Ultra-Thin Back Surface - A Field of Real Nanoscale Fault Isolation Opportunities Requiring a Skillful Sample Preparation\",\"authors\":\"C. Boit, J. Jatzkowski, F. Altmann, M. DiBattista, S. Silverman, G. Zwicker, N. Herfurth, E. Amini, J.-P. Seifert\",\"doi\":\"10.1109/IPFA55383.2022.9915783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The backside approach of contactless fault isolation (CFI) was comfortable as long as it could be carried out with Near Infra-Red (NIR) optical techniques. But even with a solid immersion lens (SIL), the resolution was limited to ~180nm, corresponding to ca. 40nm node integrated circuit (IC) technologies. However, with failure analysis (FA) experience and circuit simulation, it was still successful down to 14 nm FinFET technology. There are several attempts to keep optical CFI competitive because the FA community has enormous experience to read and interpret the obtained signals. Two major strategies are out to save optical CFI for smaller nanoscale IC technologies: (1) shorter wavelength increases resolution by practically max. 2X, but then optical absorption is increasing by orders of magnitude so bulk silicon has to get very thin, and (2) sticking to NIR resolution and work with the signal mix coming from ca. 10 FETs inside the optical spot, requiring an increasing level of circuit and device knowledge involving big data and Artificial Intelligence/Machine Learning (AI/ML).Here, another way out will be presented: (3) fault isolation techniques with real nanoscale resolution like e-beam probing, backside nanoprobing and even near-field optical microscopy are possible if only the back surface of the IC is very close to the active device. This Ultra-Thin Silicon Back Surface (UTSBS) has already been explored to a certain extent. This work shows an overview about the results that are available and the still open field of opportunities. These techniques also support CFI in 3D systems. The sample preparation is very challenging as it has to get down very close to the device of interest but gives more degrees of freedom as only local planarity in a trench is required. No space for a SIL has to be created and the imaging or probing techniques have a long working distance.So, the ultra-thinning may be only necessary in local area, offering a number of preparation solutions consisting of mainly FIB trenching and laser etching. They can as well be composed of these techniques. It will also be presented how beneficial chemical mechanical polishing (CMP) can be.\",\"PeriodicalId\":378702,\"journal\":{\"name\":\"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA55383.2022.9915783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA55383.2022.9915783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非接触故障隔离(CFI)的背面方法是舒适的,只要它能与近红外(NIR)光学技术进行。但即使使用固体浸没透镜(SIL),分辨率也被限制在~180nm,对应于约40nm的节点集成电路(IC)技术。然而,根据失效分析(FA)经验和电路仿真,它仍然是成功的14纳米FinFET技术。由于FA社区在读取和解释获得的信号方面拥有丰富的经验,因此有几种尝试可以保持光学CFI的竞争力。为了将光学CFI节省到更小的纳米级集成电路技术中,有两个主要的策略:(1)更短的波长实际上最大限度地提高了分辨率。2倍,但随后光学吸收增加了几个数量级,因此大块硅必须变得非常薄,并且(2)坚持近红外分辨率,并处理来自光学点内约10场效应管的信号混合,这需要越来越多的电路和器件知识,涉及大数据和人工智能/机器学习(AI/ML)。在这里,我们将提出另一种解决方法:(3)如果集成电路的背面非常靠近有源器件,那么具有真正纳米级分辨率的故障隔离技术,如电子束探测、背面纳米探测甚至近场光学显微镜都是可能的。这种超薄硅背表面(UTSBS)已经进行了一定程度的探索。这项工作显示了对现有结果和仍然开放的机会领域的概述。这些技术也支持3D系统中的CFI。样品制备非常具有挑战性,因为它必须非常接近感兴趣的设备,但由于只需要沟槽中的局部平面,因此提供了更多的自由度。无需为SIL创建空间,成像或探测技术具有较长的工作距离。因此,可能只需要在局部区域进行超细化,提供了以FIB沟切和激光蚀刻为主的多种制备方案。它们也可以由这些技术组成。还将介绍化学机械抛光(CMP)的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The IC Ultra-Thin Back Surface - A Field of Real Nanoscale Fault Isolation Opportunities Requiring a Skillful Sample Preparation
The backside approach of contactless fault isolation (CFI) was comfortable as long as it could be carried out with Near Infra-Red (NIR) optical techniques. But even with a solid immersion lens (SIL), the resolution was limited to ~180nm, corresponding to ca. 40nm node integrated circuit (IC) technologies. However, with failure analysis (FA) experience and circuit simulation, it was still successful down to 14 nm FinFET technology. There are several attempts to keep optical CFI competitive because the FA community has enormous experience to read and interpret the obtained signals. Two major strategies are out to save optical CFI for smaller nanoscale IC technologies: (1) shorter wavelength increases resolution by practically max. 2X, but then optical absorption is increasing by orders of magnitude so bulk silicon has to get very thin, and (2) sticking to NIR resolution and work with the signal mix coming from ca. 10 FETs inside the optical spot, requiring an increasing level of circuit and device knowledge involving big data and Artificial Intelligence/Machine Learning (AI/ML).Here, another way out will be presented: (3) fault isolation techniques with real nanoscale resolution like e-beam probing, backside nanoprobing and even near-field optical microscopy are possible if only the back surface of the IC is very close to the active device. This Ultra-Thin Silicon Back Surface (UTSBS) has already been explored to a certain extent. This work shows an overview about the results that are available and the still open field of opportunities. These techniques also support CFI in 3D systems. The sample preparation is very challenging as it has to get down very close to the device of interest but gives more degrees of freedom as only local planarity in a trench is required. No space for a SIL has to be created and the imaging or probing techniques have a long working distance.So, the ultra-thinning may be only necessary in local area, offering a number of preparation solutions consisting of mainly FIB trenching and laser etching. They can as well be composed of these techniques. It will also be presented how beneficial chemical mechanical polishing (CMP) can be.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信