{"title":"SAT-Lancer:一种用于自我验证的硬件sat求解器","authors":"B. Ustaoğlu, S. Huhn, Daniel Große, R. Drechsler","doi":"10.1145/3194554.3194643","DOIUrl":null,"url":null,"abstract":"To close the ever widening verification gap, new powerful solutions are strictly required. One such promising approach aims in continuing verification tasks after production of a chip during its lifetime. This approach is called self-verification. However, for realizing self-verification tasks on-chip, verification packages have to be developed. In this paper, we propose verification package SAT-Lancer. SAT-Lancer is a compact Boolean Satisfiability (SAT) solver and has been implemented entirely on HW with the capability of solving any arbitrary SAT-instance. At the heart of SAT-Lancer is a scalable memory model, which can be adjusted to given memory constraints and allows to store the SAT-instance most effectively. In comparison to previous HW SAT-solvers, SAT-Lancer utilizes significant less area and can handle order of magnitude larger SAT-instances.","PeriodicalId":215940,"journal":{"name":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","volume":"568 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"SAT-Lancer: A Hardware SAT-Solver for Self-Verification\",\"authors\":\"B. Ustaoğlu, S. Huhn, Daniel Große, R. Drechsler\",\"doi\":\"10.1145/3194554.3194643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To close the ever widening verification gap, new powerful solutions are strictly required. One such promising approach aims in continuing verification tasks after production of a chip during its lifetime. This approach is called self-verification. However, for realizing self-verification tasks on-chip, verification packages have to be developed. In this paper, we propose verification package SAT-Lancer. SAT-Lancer is a compact Boolean Satisfiability (SAT) solver and has been implemented entirely on HW with the capability of solving any arbitrary SAT-instance. At the heart of SAT-Lancer is a scalable memory model, which can be adjusted to given memory constraints and allows to store the SAT-instance most effectively. In comparison to previous HW SAT-solvers, SAT-Lancer utilizes significant less area and can handle order of magnitude larger SAT-instances.\",\"PeriodicalId\":215940,\"journal\":{\"name\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"volume\":\"568 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194554.3194643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194554.3194643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SAT-Lancer: A Hardware SAT-Solver for Self-Verification
To close the ever widening verification gap, new powerful solutions are strictly required. One such promising approach aims in continuing verification tasks after production of a chip during its lifetime. This approach is called self-verification. However, for realizing self-verification tasks on-chip, verification packages have to be developed. In this paper, we propose verification package SAT-Lancer. SAT-Lancer is a compact Boolean Satisfiability (SAT) solver and has been implemented entirely on HW with the capability of solving any arbitrary SAT-instance. At the heart of SAT-Lancer is a scalable memory model, which can be adjusted to given memory constraints and allows to store the SAT-instance most effectively. In comparison to previous HW SAT-solvers, SAT-Lancer utilizes significant less area and can handle order of magnitude larger SAT-instances.