{"title":"异步有限状态机的符号无危险最小化与编码","authors":"Robert M. Fuhrer, Bill Lin, S. Nowick","doi":"10.1109/ICCAD.1995.480191","DOIUrl":null,"url":null,"abstract":"This paper presents an automated method for the synthesis of multiple-input-change (MIC) asynchronous state machines. Asynchronous state machine design is subtle since, unlike synchronous synthesis, logic must be implemented without hazards, and state codes must be chosen carefully to avoid critical races. We formulate and solve an optimal hazard-free and critical race-free encoding problem for a class of MIC asynchronous state machines called burst-mode. Analogous to a paradigm successfully used for the optimal encoding of synchronous machines, the problem is formulated as an input encoding problem. Implementations are targeted to sum-of-product realizations. We believe this is the first general method for the optimal encoding of hazard-free MIC asynchronous state machines under a generalized fundamental mode of operation. Results indicate that improved solutions are produced, ranging up to 17% improvement.","PeriodicalId":367501,"journal":{"name":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Symbolic hazard-free minimization and encoding of asynchronous finite state machines\",\"authors\":\"Robert M. Fuhrer, Bill Lin, S. Nowick\",\"doi\":\"10.1109/ICCAD.1995.480191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an automated method for the synthesis of multiple-input-change (MIC) asynchronous state machines. Asynchronous state machine design is subtle since, unlike synchronous synthesis, logic must be implemented without hazards, and state codes must be chosen carefully to avoid critical races. We formulate and solve an optimal hazard-free and critical race-free encoding problem for a class of MIC asynchronous state machines called burst-mode. Analogous to a paradigm successfully used for the optimal encoding of synchronous machines, the problem is formulated as an input encoding problem. Implementations are targeted to sum-of-product realizations. We believe this is the first general method for the optimal encoding of hazard-free MIC asynchronous state machines under a generalized fundamental mode of operation. Results indicate that improved solutions are produced, ranging up to 17% improvement.\",\"PeriodicalId\":367501,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1995.480191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1995.480191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Symbolic hazard-free minimization and encoding of asynchronous finite state machines
This paper presents an automated method for the synthesis of multiple-input-change (MIC) asynchronous state machines. Asynchronous state machine design is subtle since, unlike synchronous synthesis, logic must be implemented without hazards, and state codes must be chosen carefully to avoid critical races. We formulate and solve an optimal hazard-free and critical race-free encoding problem for a class of MIC asynchronous state machines called burst-mode. Analogous to a paradigm successfully used for the optimal encoding of synchronous machines, the problem is formulated as an input encoding problem. Implementations are targeted to sum-of-product realizations. We believe this is the first general method for the optimal encoding of hazard-free MIC asynchronous state machines under a generalized fundamental mode of operation. Results indicate that improved solutions are produced, ranging up to 17% improvement.