使用工具对学生STMIK Kaputama Binjai的毕业预测系统进行背景分析

F. Faisal
{"title":"使用工具对学生STMIK Kaputama Binjai的毕业预测系统进行背景分析","authors":"F. Faisal","doi":"10.47709/dsi.v2i1.1664","DOIUrl":null,"url":null,"abstract":"Kelulusan yang tepat pada waktunya menjadi salah satu tolak ukur integritas sekolah tinggi, termasuk STMIK Kaputama Binjai. Dari tahun ke tahun, banyak mahasiswa Universitas STMIK Kaputama Binjai yang lulus tepat pada waktunya, namun tidak sedikit pula mahasiswa yang tidak lulus tepat pada waktunya. Untuk itu perlu adanya sistem prediksi kelulusan agar dosen dapat mengarahkan mahasiswa yang diprediksi akan lulus terlambat. Metode yang digunakan adalah Jaringan Syaraf Tiruan Backpropagation. Metode Backpropagation memiliki 3 arsitektur yaitu input layer, hidden layer, dan output layer. Proses Backpropagation meliputi forward dan backward. Data yang digunakan adalah data IPS1 hingga IPS4 kelulusan tahun 2015-2021 dari program studi Teknik Informatika, sebagai data latih untuk jaringan syaraf tiruan Backpropagation menggunakan data dari mahasiswa yang sudah lulus, lalu sebagai data uji untuk prediksi kelulusan bisa mnggunakan data mahasiswa yang masih menempuh pendidikan dengan ketentuan harus sudah melewati semester 4. Dari berbagai percobaan dengan fitur max iterasi, max kecepatan latih, dan minimal error yang berbeda lalu data latih yang berbeda pula dapat menghasilkan tingkat akurasi hasil prediksi yang berbeda, akurasi pengujian tertinggi dapat dilihat dari hasil error yang paling minimum. Sistem ini dibangun menggunakan Bahasa Pemrograman Visual Basic dengan software Visual Studio 2010. Hasil penelitian menunjukkan bahwa metode Backpropagations dinilai cukup bagus dalam melakukan Pengklasifikasian untuk melakukan prediksi kelulusan mahasiswa.","PeriodicalId":155875,"journal":{"name":"Data Sciences Indonesia (DSI)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penggunaan Metode Backpropagation Pada Sistem Prediksi Kelulusan Mahasiswa STMIK Kaputama Binjai\",\"authors\":\"F. Faisal\",\"doi\":\"10.47709/dsi.v2i1.1664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kelulusan yang tepat pada waktunya menjadi salah satu tolak ukur integritas sekolah tinggi, termasuk STMIK Kaputama Binjai. Dari tahun ke tahun, banyak mahasiswa Universitas STMIK Kaputama Binjai yang lulus tepat pada waktunya, namun tidak sedikit pula mahasiswa yang tidak lulus tepat pada waktunya. Untuk itu perlu adanya sistem prediksi kelulusan agar dosen dapat mengarahkan mahasiswa yang diprediksi akan lulus terlambat. Metode yang digunakan adalah Jaringan Syaraf Tiruan Backpropagation. Metode Backpropagation memiliki 3 arsitektur yaitu input layer, hidden layer, dan output layer. Proses Backpropagation meliputi forward dan backward. Data yang digunakan adalah data IPS1 hingga IPS4 kelulusan tahun 2015-2021 dari program studi Teknik Informatika, sebagai data latih untuk jaringan syaraf tiruan Backpropagation menggunakan data dari mahasiswa yang sudah lulus, lalu sebagai data uji untuk prediksi kelulusan bisa mnggunakan data mahasiswa yang masih menempuh pendidikan dengan ketentuan harus sudah melewati semester 4. Dari berbagai percobaan dengan fitur max iterasi, max kecepatan latih, dan minimal error yang berbeda lalu data latih yang berbeda pula dapat menghasilkan tingkat akurasi hasil prediksi yang berbeda, akurasi pengujian tertinggi dapat dilihat dari hasil error yang paling minimum. Sistem ini dibangun menggunakan Bahasa Pemrograman Visual Basic dengan software Visual Studio 2010. Hasil penelitian menunjukkan bahwa metode Backpropagations dinilai cukup bagus dalam melakukan Pengklasifikasian untuk melakukan prediksi kelulusan mahasiswa.\",\"PeriodicalId\":155875,\"journal\":{\"name\":\"Data Sciences Indonesia (DSI)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Sciences Indonesia (DSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47709/dsi.v2i1.1664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Sciences Indonesia (DSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47709/dsi.v2i1.1664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

适当的毕业成为衡量高中诚信的标准之一,包括Kaputama Binjai。多年来,许多STMIK Kaputama Binjai大学的学生按时毕业,但也有一些学生没有按时毕业。这需要一个毕业预测系统,这样讲师才能指导那些预计会通过的学生。使用的方法是人工神经网络的背景宣传。背景传播方法有三种结构,即多层输入、隐藏层和输出层。背景分析包括向前和向后。使用的是数据IPS1 IPS4毕业年2015-2021工程研究项目,作为国内生产总值的人造神经网络训练Backpropagation使用数据的学生已经毕业,然后作为测试数据来预测还接受高等教育的学生毕业可以mnggunakan数据规定应该通过四个学期。在具有最大重复特征、max练习速度和最小错误的实验中,不同的培训数据可以产生不同预测的准确性水平,最高的测试准确性可以从最小的错误中观察到。它是使用2010年Studio视觉软件的基本视觉编程语言构建的。研究结果表明,在进行学生毕业预测方面,交叉宣传的方法被认为是相当有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penggunaan Metode Backpropagation Pada Sistem Prediksi Kelulusan Mahasiswa STMIK Kaputama Binjai
Kelulusan yang tepat pada waktunya menjadi salah satu tolak ukur integritas sekolah tinggi, termasuk STMIK Kaputama Binjai. Dari tahun ke tahun, banyak mahasiswa Universitas STMIK Kaputama Binjai yang lulus tepat pada waktunya, namun tidak sedikit pula mahasiswa yang tidak lulus tepat pada waktunya. Untuk itu perlu adanya sistem prediksi kelulusan agar dosen dapat mengarahkan mahasiswa yang diprediksi akan lulus terlambat. Metode yang digunakan adalah Jaringan Syaraf Tiruan Backpropagation. Metode Backpropagation memiliki 3 arsitektur yaitu input layer, hidden layer, dan output layer. Proses Backpropagation meliputi forward dan backward. Data yang digunakan adalah data IPS1 hingga IPS4 kelulusan tahun 2015-2021 dari program studi Teknik Informatika, sebagai data latih untuk jaringan syaraf tiruan Backpropagation menggunakan data dari mahasiswa yang sudah lulus, lalu sebagai data uji untuk prediksi kelulusan bisa mnggunakan data mahasiswa yang masih menempuh pendidikan dengan ketentuan harus sudah melewati semester 4. Dari berbagai percobaan dengan fitur max iterasi, max kecepatan latih, dan minimal error yang berbeda lalu data latih yang berbeda pula dapat menghasilkan tingkat akurasi hasil prediksi yang berbeda, akurasi pengujian tertinggi dapat dilihat dari hasil error yang paling minimum. Sistem ini dibangun menggunakan Bahasa Pemrograman Visual Basic dengan software Visual Studio 2010. Hasil penelitian menunjukkan bahwa metode Backpropagations dinilai cukup bagus dalam melakukan Pengklasifikasian untuk melakukan prediksi kelulusan mahasiswa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信