电力系统动态当量相干识别技术的改进

Sung-Kwan Joo, Chen-Ching Liu, J. Choe
{"title":"电力系统动态当量相干识别技术的改进","authors":"Sung-Kwan Joo, Chen-Ching Liu, J. Choe","doi":"10.1109/PESS.2001.970352","DOIUrl":null,"url":null,"abstract":"In dynamic studies of large electric power systems, it is often necessary to reduce a large power network to a smaller equivalent system while keeping the dynamic characteristics of the full system model within the desired accuracy. This paper proposes new coherency identification techniques using the K-means algorithm for construction of dynamic equivalent models. Numerical simulation results based on a NPCC 48-machine test system are presented to demonstrate the performance of the proposed method.","PeriodicalId":273578,"journal":{"name":"2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262)","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Enhancement of coherency identification techniques for power system dynamic equivalents\",\"authors\":\"Sung-Kwan Joo, Chen-Ching Liu, J. Choe\",\"doi\":\"10.1109/PESS.2001.970352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In dynamic studies of large electric power systems, it is often necessary to reduce a large power network to a smaller equivalent system while keeping the dynamic characteristics of the full system model within the desired accuracy. This paper proposes new coherency identification techniques using the K-means algorithm for construction of dynamic equivalent models. Numerical simulation results based on a NPCC 48-machine test system are presented to demonstrate the performance of the proposed method.\",\"PeriodicalId\":273578,\"journal\":{\"name\":\"2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262)\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESS.2001.970352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESS.2001.970352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在大型电力系统的动态研究中,往往需要将大型电网缩小为较小的等效系统,同时使整个系统模型的动态特性保持在期望的精度范围内。本文提出了利用K-means算法构建动态等效模型的相干性识别新技术。最后给出了基于NPCC 48机测试系统的数值仿真结果,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of coherency identification techniques for power system dynamic equivalents
In dynamic studies of large electric power systems, it is often necessary to reduce a large power network to a smaller equivalent system while keeping the dynamic characteristics of the full system model within the desired accuracy. This paper proposes new coherency identification techniques using the K-means algorithm for construction of dynamic equivalent models. Numerical simulation results based on a NPCC 48-machine test system are presented to demonstrate the performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信