一种基于注意力模块的CNN图像超分辨率新框架

J. Tan, H. Mukaidani
{"title":"一种基于注意力模块的CNN图像超分辨率新框架","authors":"J. Tan, H. Mukaidani","doi":"10.1109/ISIE45552.2021.9576265","DOIUrl":null,"url":null,"abstract":"Because the convolutional neural network only captures the inherent size feature of a single image in the research of image super-resolution process, a framework based on the attention module and multi-dimension feature merge is proposed. Using the attention module, the network can validly conform non-local information, thus improving the network's feature expression ability. Meanwhile, the convolution kernels of different dimensions are used to extract the multi-dimension intelligence of the image to maintain the intact information of distinguishing feature under the different scales. Experimental results demonstrate that this method is advantageous than some super-resolution reconstruction alagorithms in objective quantitative indicators.","PeriodicalId":365956,"journal":{"name":"2021 IEEE 30th International Symposium on Industrial Electronics (ISIE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Framework of CNN for Image Super-Resolution Based on Attention Module\",\"authors\":\"J. Tan, H. Mukaidani\",\"doi\":\"10.1109/ISIE45552.2021.9576265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because the convolutional neural network only captures the inherent size feature of a single image in the research of image super-resolution process, a framework based on the attention module and multi-dimension feature merge is proposed. Using the attention module, the network can validly conform non-local information, thus improving the network's feature expression ability. Meanwhile, the convolution kernels of different dimensions are used to extract the multi-dimension intelligence of the image to maintain the intact information of distinguishing feature under the different scales. Experimental results demonstrate that this method is advantageous than some super-resolution reconstruction alagorithms in objective quantitative indicators.\",\"PeriodicalId\":365956,\"journal\":{\"name\":\"2021 IEEE 30th International Symposium on Industrial Electronics (ISIE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 30th International Symposium on Industrial Electronics (ISIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE45552.2021.9576265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 30th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE45552.2021.9576265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对卷积神经网络在研究图像超分辨率过程中只捕获单幅图像的固有尺寸特征的问题,提出了一种基于注意模块和多维特征合并的框架。利用注意模块,网络可以有效地整合非局部信息,从而提高网络的特征表达能力。同时,利用不同维数的卷积核提取图像的多维智能,在不同尺度下保持特征信息的完整性。实验结果表明,该方法在客观定量指标方面优于一些超分辨率重建算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Framework of CNN for Image Super-Resolution Based on Attention Module
Because the convolutional neural network only captures the inherent size feature of a single image in the research of image super-resolution process, a framework based on the attention module and multi-dimension feature merge is proposed. Using the attention module, the network can validly conform non-local information, thus improving the network's feature expression ability. Meanwhile, the convolution kernels of different dimensions are used to extract the multi-dimension intelligence of the image to maintain the intact information of distinguishing feature under the different scales. Experimental results demonstrate that this method is advantageous than some super-resolution reconstruction alagorithms in objective quantitative indicators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信