二维场效应晶体管的可靠性:从最初的原型到可扩展的器件

Y. Illarionov, T. Grasser
{"title":"二维场效应晶体管的可靠性:从最初的原型到可扩展的器件","authors":"Y. Illarionov, T. Grasser","doi":"10.1109/IPFA47161.2019.8984799","DOIUrl":null,"url":null,"abstract":"The rich and fascinating properties of two-dimensional (2D) materials have recently inspired various intriguing ideas for post-silicon nanoelectronics. One of the most far reaching of them is the possible substitution of Si with 2D materials in modern field-effect transistors (FETs). Ideally, this should suppress short-channel effects and thus extend Moore’s law below 5nm channel lengths, while maintaining and possibly even overcoming the high performance of commercial Si devices. However, despite recent progress at fabricating 2D FETs, there is still no commercially competitive transistor technology. One of the main reasons for this is the relatively poor reliability of typical 2D FET prototypes, which suffer from hysteresis and bias-temperature instabilities (BTI) of the transistor characteristics. Despite this, the attention paid to this serious problem is impermissibly low. Here we discuss the main achievements at understanding the reliability of various 2D FETs, from the first prototypes to recently reported scalable devices.","PeriodicalId":169775,"journal":{"name":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reliability of 2D Field-Effect Transistors: from First Prototypes to Scalable Devices\",\"authors\":\"Y. Illarionov, T. Grasser\",\"doi\":\"10.1109/IPFA47161.2019.8984799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rich and fascinating properties of two-dimensional (2D) materials have recently inspired various intriguing ideas for post-silicon nanoelectronics. One of the most far reaching of them is the possible substitution of Si with 2D materials in modern field-effect transistors (FETs). Ideally, this should suppress short-channel effects and thus extend Moore’s law below 5nm channel lengths, while maintaining and possibly even overcoming the high performance of commercial Si devices. However, despite recent progress at fabricating 2D FETs, there is still no commercially competitive transistor technology. One of the main reasons for this is the relatively poor reliability of typical 2D FET prototypes, which suffer from hysteresis and bias-temperature instabilities (BTI) of the transistor characteristics. Despite this, the attention paid to this serious problem is impermissibly low. Here we discuss the main achievements at understanding the reliability of various 2D FETs, from the first prototypes to recently reported scalable devices.\",\"PeriodicalId\":169775,\"journal\":{\"name\":\"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA47161.2019.8984799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA47161.2019.8984799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

二维(2D)材料丰富而迷人的特性最近激发了后硅纳米电子学的各种有趣想法。其中影响最深远的是在现代场效应晶体管(fet)中可能用二维材料替代Si。理想情况下,这应该抑制短通道效应,从而将摩尔定律扩展到5nm通道长度以下,同时保持甚至可能克服商用硅器件的高性能。然而,尽管最近在制造二维场效应管方面取得了进展,但仍然没有具有商业竞争力的晶体管技术。造成这种情况的主要原因之一是典型的二维场效应管原型相对较差的可靠性,这受到晶体管特性的滞后和偏温不稳定性(BTI)的影响。尽管如此,对这一严重问题的重视程度却低得离谱。在这里,我们讨论了在理解各种2D场效应管的可靠性方面的主要成就,从第一个原型到最近报道的可扩展器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability of 2D Field-Effect Transistors: from First Prototypes to Scalable Devices
The rich and fascinating properties of two-dimensional (2D) materials have recently inspired various intriguing ideas for post-silicon nanoelectronics. One of the most far reaching of them is the possible substitution of Si with 2D materials in modern field-effect transistors (FETs). Ideally, this should suppress short-channel effects and thus extend Moore’s law below 5nm channel lengths, while maintaining and possibly even overcoming the high performance of commercial Si devices. However, despite recent progress at fabricating 2D FETs, there is still no commercially competitive transistor technology. One of the main reasons for this is the relatively poor reliability of typical 2D FET prototypes, which suffer from hysteresis and bias-temperature instabilities (BTI) of the transistor characteristics. Despite this, the attention paid to this serious problem is impermissibly low. Here we discuss the main achievements at understanding the reliability of various 2D FETs, from the first prototypes to recently reported scalable devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信