时间敏感网络中的循环依赖性和调节器

Ludovic Thomas, J. Boudec, A. Mifdaoui
{"title":"时间敏感网络中的循环依赖性和调节器","authors":"Ludovic Thomas, J. Boudec, A. Mifdaoui","doi":"10.1109/RTSS46320.2019.00035","DOIUrl":null,"url":null,"abstract":"For time-sensitive networks, as in the context of IEEE TSN and IETF Detnet, cyclic dependencies are associated with certain fundamental properties such as improving availability and decreasing reconfiguration effort. Nevertheless, the existence of cyclic dependencies can cause very large latency bounds or even global instability, thus making the proof of the timing predictability of such networks a much more challenging issue. Cyclic dependencies can be removed by reshaping flows inside the network, by means of regulators. We consider FIFO-per-class networks with two types of regulators: perflow regulators and interleaved regulators (the latter reshape entire flow aggregates). Such regulators come with a hardware cost that is less for an interleaved regulator than for a perflow regulator; both can affect the latency bounds in different ways. We analyze the benefits of both types of regulators in partial and full deployments in terms of latency. First, we propose Low-Cost Acyclic Network (LCAN), a new algorithm for finding the optimum number of regulators for breaking all cyclic dependencies. Then, we provide another algorithm, Fixed- Point Total Flow Analysis (FP-TFA), for computing end-to-end delay bounds for general topologies, i.e., with and without cyclic dependencies. An extensive analysis of these proposed algorithms was conducted on generic grid topologies. For these test networks, we find that FP-TFA computes small latency bounds; but, at a medium to high utilization, the benefit of regulators becomes apparent. At high utilization or for high line transmission-rates, a small number of per-flow regulators has an effect on the latency bound larger than a small number of interleaved regulators. Moreover, interleaved regulators need to be placed everywhere in the network to provide noticeable improvements. We validate the applicability of our approaches on a realistic industrial timesensitive network.","PeriodicalId":102892,"journal":{"name":"2019 IEEE Real-Time Systems Symposium (RTSS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"On Cyclic Dependencies and Regulators in Time-Sensitive Networks\",\"authors\":\"Ludovic Thomas, J. Boudec, A. Mifdaoui\",\"doi\":\"10.1109/RTSS46320.2019.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For time-sensitive networks, as in the context of IEEE TSN and IETF Detnet, cyclic dependencies are associated with certain fundamental properties such as improving availability and decreasing reconfiguration effort. Nevertheless, the existence of cyclic dependencies can cause very large latency bounds or even global instability, thus making the proof of the timing predictability of such networks a much more challenging issue. Cyclic dependencies can be removed by reshaping flows inside the network, by means of regulators. We consider FIFO-per-class networks with two types of regulators: perflow regulators and interleaved regulators (the latter reshape entire flow aggregates). Such regulators come with a hardware cost that is less for an interleaved regulator than for a perflow regulator; both can affect the latency bounds in different ways. We analyze the benefits of both types of regulators in partial and full deployments in terms of latency. First, we propose Low-Cost Acyclic Network (LCAN), a new algorithm for finding the optimum number of regulators for breaking all cyclic dependencies. Then, we provide another algorithm, Fixed- Point Total Flow Analysis (FP-TFA), for computing end-to-end delay bounds for general topologies, i.e., with and without cyclic dependencies. An extensive analysis of these proposed algorithms was conducted on generic grid topologies. For these test networks, we find that FP-TFA computes small latency bounds; but, at a medium to high utilization, the benefit of regulators becomes apparent. At high utilization or for high line transmission-rates, a small number of per-flow regulators has an effect on the latency bound larger than a small number of interleaved regulators. Moreover, interleaved regulators need to be placed everywhere in the network to provide noticeable improvements. We validate the applicability of our approaches on a realistic industrial timesensitive network.\",\"PeriodicalId\":102892,\"journal\":{\"name\":\"2019 IEEE Real-Time Systems Symposium (RTSS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Real-Time Systems Symposium (RTSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS46320.2019.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS46320.2019.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

对于时间敏感的网络,如在IEEE TSN和IETF Detnet的上下文中,循环依赖关系与某些基本属性相关联,例如提高可用性和减少重新配置工作。然而,循环依赖关系的存在可能会导致非常大的延迟边界甚至全局不稳定,从而使证明此类网络的时间可预测性成为一个更具挑战性的问题。通过调整网络内部的流动,可以消除循环依赖。我们考虑具有两种类型调节器的FIFO-per-class网络:流量调节器和交错调节器(后者重塑整个流量总量)。这种调节器的硬件成本比交错式调节器要低;两者都可以以不同的方式影响延迟边界。我们从延迟方面分析了两种类型的监管机构在部分部署和完全部署中的好处。首先,我们提出了低成本无环网络(LCAN),这是一种寻找打破所有循环依赖的最优调节器数量的新算法。然后,我们提供了另一种算法,固定点总流分析(FP-TFA),用于计算一般拓扑的端到端延迟界,即有无循环依赖。在通用网格拓扑上对这些算法进行了广泛的分析。对于这些测试网络,我们发现FP-TFA计算的延迟边界很小;但是,在中高利用率时,监管机构的好处变得明显。在高利用率或高线传输率时,少量的每流调节器比少量的交错调节器对延迟边界的影响更大。此外,交错的监管机构需要被放置在网络的任何地方,以提供明显的改善。我们验证了我们的方法在实际工业时间敏感网络上的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Cyclic Dependencies and Regulators in Time-Sensitive Networks
For time-sensitive networks, as in the context of IEEE TSN and IETF Detnet, cyclic dependencies are associated with certain fundamental properties such as improving availability and decreasing reconfiguration effort. Nevertheless, the existence of cyclic dependencies can cause very large latency bounds or even global instability, thus making the proof of the timing predictability of such networks a much more challenging issue. Cyclic dependencies can be removed by reshaping flows inside the network, by means of regulators. We consider FIFO-per-class networks with two types of regulators: perflow regulators and interleaved regulators (the latter reshape entire flow aggregates). Such regulators come with a hardware cost that is less for an interleaved regulator than for a perflow regulator; both can affect the latency bounds in different ways. We analyze the benefits of both types of regulators in partial and full deployments in terms of latency. First, we propose Low-Cost Acyclic Network (LCAN), a new algorithm for finding the optimum number of regulators for breaking all cyclic dependencies. Then, we provide another algorithm, Fixed- Point Total Flow Analysis (FP-TFA), for computing end-to-end delay bounds for general topologies, i.e., with and without cyclic dependencies. An extensive analysis of these proposed algorithms was conducted on generic grid topologies. For these test networks, we find that FP-TFA computes small latency bounds; but, at a medium to high utilization, the benefit of regulators becomes apparent. At high utilization or for high line transmission-rates, a small number of per-flow regulators has an effect on the latency bound larger than a small number of interleaved regulators. Moreover, interleaved regulators need to be placed everywhere in the network to provide noticeable improvements. We validate the applicability of our approaches on a realistic industrial timesensitive network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信