一种用于降低嵌入式系统能耗的单周期可访问的两级缓存架构

S. Yamaguchi, T. Ishihara, H. Yasuura
{"title":"一种用于降低嵌入式系统能耗的单周期可访问的两级缓存架构","authors":"S. Yamaguchi, T. Ishihara, H. Yasuura","doi":"10.1109/SOCDC.2008.4815604","DOIUrl":null,"url":null,"abstract":"Employing a small L0-cache between an MPU core and an L1-cache is one of the most promising approaches for reducing the energy consumption of memory subsystems. Since the L0-cache is small, if there is a hit, the energy consumption will be reduced. On the other hand, if there is a miss, one extra cycle is required to access the L1-cache. This leads to a degradation of the processor performance. For resolving this problem, a single cycle accessible two-level cache (STC) architecture is proposed in this paper. This architecture makes it possible to access to both the L0 and the L1 caches from an MPU core in a cycle. Experiments using several benchmark programs demonstrate that the STC architecture reduces the energy consumption of memory subsystems by 13% without any performance degradation compared to the best results obtained by previous approaches.","PeriodicalId":405078,"journal":{"name":"2008 International SoC Design Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A single cycle accessible two-level cache architecture for reducing the energy consumption of embedded systems\",\"authors\":\"S. Yamaguchi, T. Ishihara, H. Yasuura\",\"doi\":\"10.1109/SOCDC.2008.4815604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Employing a small L0-cache between an MPU core and an L1-cache is one of the most promising approaches for reducing the energy consumption of memory subsystems. Since the L0-cache is small, if there is a hit, the energy consumption will be reduced. On the other hand, if there is a miss, one extra cycle is required to access the L1-cache. This leads to a degradation of the processor performance. For resolving this problem, a single cycle accessible two-level cache (STC) architecture is proposed in this paper. This architecture makes it possible to access to both the L0 and the L1 caches from an MPU core in a cycle. Experiments using several benchmark programs demonstrate that the STC architecture reduces the energy consumption of memory subsystems by 13% without any performance degradation compared to the best results obtained by previous approaches.\",\"PeriodicalId\":405078,\"journal\":{\"name\":\"2008 International SoC Design Conference\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International SoC Design Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCDC.2008.4815604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International SoC Design Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCDC.2008.4815604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在MPU核心和l1缓存之间使用一个小的l0缓存是减少内存子系统能耗的最有希望的方法之一。由于l0缓存很小,如果有命中,则会降低能耗。另一方面,如果没有命中,则需要一个额外的周期来访问l1缓存。这将导致处理器性能的下降。为了解决这一问题,本文提出了一种单周期可访问的二级缓存(STC)架构。这种架构使得在一个周期内从MPU核心访问L0和L1缓存成为可能。使用几个基准程序进行的实验表明,与以前的方法相比,STC架构在没有任何性能下降的情况下将内存子系统的能耗降低了13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A single cycle accessible two-level cache architecture for reducing the energy consumption of embedded systems
Employing a small L0-cache between an MPU core and an L1-cache is one of the most promising approaches for reducing the energy consumption of memory subsystems. Since the L0-cache is small, if there is a hit, the energy consumption will be reduced. On the other hand, if there is a miss, one extra cycle is required to access the L1-cache. This leads to a degradation of the processor performance. For resolving this problem, a single cycle accessible two-level cache (STC) architecture is proposed in this paper. This architecture makes it possible to access to both the L0 and the L1 caches from an MPU core in a cycle. Experiments using several benchmark programs demonstrate that the STC architecture reduces the energy consumption of memory subsystems by 13% without any performance degradation compared to the best results obtained by previous approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信