球栅阵列中Sn-4Ag-0.5Cu焊点在回流和温度循环中的力学特性

Lai Zheng Bo, N. Kamsah, L. W. Keat, M. Tamin
{"title":"球栅阵列中Sn-4Ag-0.5Cu焊点在回流和温度循环中的力学特性","authors":"Lai Zheng Bo, N. Kamsah, L. W. Keat, M. Tamin","doi":"10.1109/IEMT.2008.5507864","DOIUrl":null,"url":null,"abstract":"A thorough understanding of the mechanics of lead-free solder joint in a ball grid array (BGA) assembly under expected operating conditions is essential in developing reliable life prediction models. In this respect, accurate deformation response of Sn-4Ag-0.5Cu (SAC405) solder under varying temperature cycles and straining rates is established using unified inelastic strain theory. The mechanics of the solder joint is then quantified through finite element modeling of a typical BGA assembly. The 3D quarter-model of the test assembly consists of silicon die, FR-4 substrate and printed circuit board (PCB), copper traces, intermetallics layer (IMC) and SAC405 solder joints in an area array. Reflow temperature profile consists of cooling from the assumed stress-free temperature of 220 to 25°C. Temperature cycles in the range between 125 and -40°C with dwell time at peak temperature levels are simulated. Results show that residual von Mises stress of 48.7 MPa and the corresponding inelastic strain of 0.031 are predicted in the critical solder joint at 25°C following solder reflow cooling. Additional inelastic strains accumulates continuously in the solder throughout the temperature cycles. Solder stress relaxation with accompanying inelastic strain occurs during dwell-time periods at both -40 and 125°C due viscoplastic and creep effects, respectively. In the critical solder joint, both high stress and strain gradients are localized in a small edge region at the solder-IMC interface near the component (SMD) side of the assembly. A new fatigue life model with unified inelastic strain theory defined for SAC405 solder joints is proposed based on accumulated inelastic strains and plastic work density of the critical solder joint.","PeriodicalId":151085,"journal":{"name":"2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mechanics of Sn-4Ag-0.5Cu solder joints in a ball grid array assembly during reflow and temperature cycles\",\"authors\":\"Lai Zheng Bo, N. Kamsah, L. W. Keat, M. Tamin\",\"doi\":\"10.1109/IEMT.2008.5507864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thorough understanding of the mechanics of lead-free solder joint in a ball grid array (BGA) assembly under expected operating conditions is essential in developing reliable life prediction models. In this respect, accurate deformation response of Sn-4Ag-0.5Cu (SAC405) solder under varying temperature cycles and straining rates is established using unified inelastic strain theory. The mechanics of the solder joint is then quantified through finite element modeling of a typical BGA assembly. The 3D quarter-model of the test assembly consists of silicon die, FR-4 substrate and printed circuit board (PCB), copper traces, intermetallics layer (IMC) and SAC405 solder joints in an area array. Reflow temperature profile consists of cooling from the assumed stress-free temperature of 220 to 25°C. Temperature cycles in the range between 125 and -40°C with dwell time at peak temperature levels are simulated. Results show that residual von Mises stress of 48.7 MPa and the corresponding inelastic strain of 0.031 are predicted in the critical solder joint at 25°C following solder reflow cooling. Additional inelastic strains accumulates continuously in the solder throughout the temperature cycles. Solder stress relaxation with accompanying inelastic strain occurs during dwell-time periods at both -40 and 125°C due viscoplastic and creep effects, respectively. In the critical solder joint, both high stress and strain gradients are localized in a small edge region at the solder-IMC interface near the component (SMD) side of the assembly. A new fatigue life model with unified inelastic strain theory defined for SAC405 solder joints is proposed based on accumulated inelastic strains and plastic work density of the critical solder joint.\",\"PeriodicalId\":151085,\"journal\":{\"name\":\"2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMT.2008.5507864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMT.2008.5507864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

全面了解球栅阵列(BGA)组件中无铅焊点在预期工作条件下的机理,对于开发可靠的寿命预测模型至关重要。利用统一的非弹性应变理论,建立了Sn-4Ag-0.5Cu (SAC405)焊料在不同温度循环和应变速率下的精确变形响应。然后通过典型BGA组件的有限元建模来量化焊点的力学。测试组件的3D四分之一模型由硅芯片、FR-4衬底和印刷电路板(PCB)、铜走线、金属间化合物层(IMC)和SAC405焊点组成。回流温度分布包括从假定的无应力温度220°C到25°C的冷却。温度循环在125和-40°C之间的范围内与停留时间在峰值温度水平进行了模拟。结果表明:在回流焊后的临界焊点温度为25℃时,预计残余von Mises应力为48.7 MPa,非弹性应变为0.031;在整个温度循环过程中,附加的非弹性应变在焊料中不断累积。在-40°C和125°C下,由于粘塑性和蠕变效应,焊料应力松弛伴随着非弹性应变发生。在关键焊点,高应力和应变梯度都集中在靠近组件(SMD)一侧的焊料- imc界面的小边缘区域。基于临界焊点的累积非弹性应变和塑性功密度,提出了基于统一非弹性应变理论的SAC405焊点疲劳寿命模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanics of Sn-4Ag-0.5Cu solder joints in a ball grid array assembly during reflow and temperature cycles
A thorough understanding of the mechanics of lead-free solder joint in a ball grid array (BGA) assembly under expected operating conditions is essential in developing reliable life prediction models. In this respect, accurate deformation response of Sn-4Ag-0.5Cu (SAC405) solder under varying temperature cycles and straining rates is established using unified inelastic strain theory. The mechanics of the solder joint is then quantified through finite element modeling of a typical BGA assembly. The 3D quarter-model of the test assembly consists of silicon die, FR-4 substrate and printed circuit board (PCB), copper traces, intermetallics layer (IMC) and SAC405 solder joints in an area array. Reflow temperature profile consists of cooling from the assumed stress-free temperature of 220 to 25°C. Temperature cycles in the range between 125 and -40°C with dwell time at peak temperature levels are simulated. Results show that residual von Mises stress of 48.7 MPa and the corresponding inelastic strain of 0.031 are predicted in the critical solder joint at 25°C following solder reflow cooling. Additional inelastic strains accumulates continuously in the solder throughout the temperature cycles. Solder stress relaxation with accompanying inelastic strain occurs during dwell-time periods at both -40 and 125°C due viscoplastic and creep effects, respectively. In the critical solder joint, both high stress and strain gradients are localized in a small edge region at the solder-IMC interface near the component (SMD) side of the assembly. A new fatigue life model with unified inelastic strain theory defined for SAC405 solder joints is proposed based on accumulated inelastic strains and plastic work density of the critical solder joint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信