分治递归的Gröbner-basis理论

F. Chyzak, P. Dumas
{"title":"分治递归的Gröbner-basis理论","authors":"F. Chyzak, P. Dumas","doi":"10.1145/3373207.3404055","DOIUrl":null,"url":null,"abstract":"We introduce a variety of noncommutative polynomials that represent divide-and-conquer recurrence systems. Our setting involves at the same time variables that behave like words in purely noncommutative algebras and variables governed by commutation rules like in skew polynomial rings. We then develop a Gröbner-basis theory for left ideals of such polynomials. Strikingly, the nature of commutations generally prevents the leading monomial of a polynomial product to be the product of the leading monomials. To overcome the difficulty, we consider a specific monomial ordering, together with a restriction to monic divisors in intermediate steps. After obtaining an analogue of Buchberger's algorithm, we develop a variant of the F4 algorithm, whose speed we compare.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Gröbner-basis theory for divide-and-conquer recurrences\",\"authors\":\"F. Chyzak, P. Dumas\",\"doi\":\"10.1145/3373207.3404055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a variety of noncommutative polynomials that represent divide-and-conquer recurrence systems. Our setting involves at the same time variables that behave like words in purely noncommutative algebras and variables governed by commutation rules like in skew polynomial rings. We then develop a Gröbner-basis theory for left ideals of such polynomials. Strikingly, the nature of commutations generally prevents the leading monomial of a polynomial product to be the product of the leading monomials. To overcome the difficulty, we consider a specific monomial ordering, together with a restriction to monic divisors in intermediate steps. After obtaining an analogue of Buchberger's algorithm, we develop a variant of the F4 algorithm, whose speed we compare.\",\"PeriodicalId\":186699,\"journal\":{\"name\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3373207.3404055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3404055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了各种表示分治递归系统的非交换多项式。我们的设置同时涉及到在纯非交换代数中表现得像单词的变量和在歪斜多项式环中受交换规则支配的变量。然后,我们为这些多项式的左理想发展了Gröbner-basis理论。引人注目的是,交换的性质通常阻止多项式乘积的前导单项式是前导单项式的乘积。为了克服这个困难,我们考虑了一个特定的单项式排序,并在中间步骤中对单项式除数进行了限制。在得到Buchberger算法的模拟后,我们开发了F4算法的一个变体,并对其速度进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Gröbner-basis theory for divide-and-conquer recurrences
We introduce a variety of noncommutative polynomials that represent divide-and-conquer recurrence systems. Our setting involves at the same time variables that behave like words in purely noncommutative algebras and variables governed by commutation rules like in skew polynomial rings. We then develop a Gröbner-basis theory for left ideals of such polynomials. Strikingly, the nature of commutations generally prevents the leading monomial of a polynomial product to be the product of the leading monomials. To overcome the difficulty, we consider a specific monomial ordering, together with a restriction to monic divisors in intermediate steps. After obtaining an analogue of Buchberger's algorithm, we develop a variant of the F4 algorithm, whose speed we compare.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信