一个小样本长面板数据的金融计量经济学预测模型

Yuer Yang, Ruotong Du, Haodong Tang, Yanxin Zheng
{"title":"一个小样本长面板数据的金融计量经济学预测模型","authors":"Yuer Yang, Ruotong Du, Haodong Tang, Yanxin Zheng","doi":"10.1145/3512576.3512607","DOIUrl":null,"url":null,"abstract":"The recent period has witnessed the quantification and modeling of financial data become the crystallization of the intersection of finance and computers. In some research institutions, this crystallization product has received a specific name - FinTech. Numerous studies based on big data processing tend to obtain indicators with very optimistic accuracy, while for long panel-type small sample data, the existing studies propose very sparse targeted models. In this paper, we analyze the trend of trading volume and price move-ment of 10 stocks based on tick frequency data of 10 stocks in cross-section time series and set up a split-order algorithm to obtain the maximum total trading volume under the condition of satisfying the predicted trend to assist investors to maximize their","PeriodicalId":278114,"journal":{"name":"Proceedings of the 2021 9th International Conference on Information Technology: IoT and Smart City","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SSLPNet: A financial econometric prediction model for small-sample long panel data\",\"authors\":\"Yuer Yang, Ruotong Du, Haodong Tang, Yanxin Zheng\",\"doi\":\"10.1145/3512576.3512607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent period has witnessed the quantification and modeling of financial data become the crystallization of the intersection of finance and computers. In some research institutions, this crystallization product has received a specific name - FinTech. Numerous studies based on big data processing tend to obtain indicators with very optimistic accuracy, while for long panel-type small sample data, the existing studies propose very sparse targeted models. In this paper, we analyze the trend of trading volume and price move-ment of 10 stocks based on tick frequency data of 10 stocks in cross-section time series and set up a split-order algorithm to obtain the maximum total trading volume under the condition of satisfying the predicted trend to assist investors to maximize their\",\"PeriodicalId\":278114,\"journal\":{\"name\":\"Proceedings of the 2021 9th International Conference on Information Technology: IoT and Smart City\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 9th International Conference on Information Technology: IoT and Smart City\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512576.3512607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 9th International Conference on Information Technology: IoT and Smart City","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512576.3512607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近一段时间,金融数据的量化和建模成为金融与计算机交叉的结晶。在一些研究机构中,这种结晶产品有了一个具体的名字——金融科技。大量基于大数据处理的研究往往得到精度非常乐观的指标,而对于长面板型小样本数据,现有研究提出的目标模型非常稀疏。本文基于10只股票在横截面时间序列上的波动频率数据,分析了10只股票的交易量和价格变动趋势,并建立了分序算法,在满足预测趋势的情况下,求出最大的总交易量,以帮助投资者实现投资最大化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SSLPNet: A financial econometric prediction model for small-sample long panel data
The recent period has witnessed the quantification and modeling of financial data become the crystallization of the intersection of finance and computers. In some research institutions, this crystallization product has received a specific name - FinTech. Numerous studies based on big data processing tend to obtain indicators with very optimistic accuracy, while for long panel-type small sample data, the existing studies propose very sparse targeted models. In this paper, we analyze the trend of trading volume and price move-ment of 10 stocks based on tick frequency data of 10 stocks in cross-section time series and set up a split-order algorithm to obtain the maximum total trading volume under the condition of satisfying the predicted trend to assist investors to maximize their
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信