F. Meyer, M. Koch, K. Nishikawa, G. Larbig, K. Taniguchi
{"title":"新型聚合物设计的超低应力材料用于先进的包装应用","authors":"F. Meyer, M. Koch, K. Nishikawa, G. Larbig, K. Taniguchi","doi":"10.1117/12.2658391","DOIUrl":null,"url":null,"abstract":"Multi-RDL architectures in WLP are pushing established materials like polyimide to their limits. Key limitations of these material are high temperature curing and shrinkage which leads to warpage and yield losses. We are developing a dielectric packaging material that has minimal stress upon curing while being compatible with established packaging processes. Another goal is to keep dielectric constant and loss factor as low as possible to ensure compatibility with high frequency applications. Additional feature for this new polymer class is high temperature stability.","PeriodicalId":212235,"journal":{"name":"Advanced Lithography","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel polymer design for ultra-low stress material for advanced packaging applications\",\"authors\":\"F. Meyer, M. Koch, K. Nishikawa, G. Larbig, K. Taniguchi\",\"doi\":\"10.1117/12.2658391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-RDL architectures in WLP are pushing established materials like polyimide to their limits. Key limitations of these material are high temperature curing and shrinkage which leads to warpage and yield losses. We are developing a dielectric packaging material that has minimal stress upon curing while being compatible with established packaging processes. Another goal is to keep dielectric constant and loss factor as low as possible to ensure compatibility with high frequency applications. Additional feature for this new polymer class is high temperature stability.\",\"PeriodicalId\":212235,\"journal\":{\"name\":\"Advanced Lithography\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2658391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2658391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel polymer design for ultra-low stress material for advanced packaging applications
Multi-RDL architectures in WLP are pushing established materials like polyimide to their limits. Key limitations of these material are high temperature curing and shrinkage which leads to warpage and yield losses. We are developing a dielectric packaging material that has minimal stress upon curing while being compatible with established packaging processes. Another goal is to keep dielectric constant and loss factor as low as possible to ensure compatibility with high frequency applications. Additional feature for this new polymer class is high temperature stability.