通往超低能耗计算的道路

E. Debenedictis, M. Frank, N. Ganesh, N. Anderson
{"title":"通往超低能耗计算的道路","authors":"E. Debenedictis, M. Frank, N. Ganesh, N. Anderson","doi":"10.1109/ICRC.2016.7738677","DOIUrl":null,"url":null,"abstract":"At roughly kT energy dissipation per operation, the thermodynamic energy efficiency “limits” of Moore's Law were unimaginably far off in the 1960s. However, current computers operate at only 100-10,000 times this limit, forming an argument that historical rates of efficiency scaling must soon slow. This paper reviews the justification for the ~kT per operation limit in the context of processors for von Neumann-class computer architectures of the 1960s. We then reapply the fundamental arguments to contemporary applications and identify a new direction for future computing in which the ultimate efficiency limits would be much further out. New nanodevices with high-level functions that aggregate the functionality of several logic gates and some local memory may be the right building blocks for much more energy efficient execution of emerging applications-such as neural networks.","PeriodicalId":387008,"journal":{"name":"2016 IEEE International Conference on Rebooting Computing (ICRC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A path toward ultra-low-energy computing\",\"authors\":\"E. Debenedictis, M. Frank, N. Ganesh, N. Anderson\",\"doi\":\"10.1109/ICRC.2016.7738677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At roughly kT energy dissipation per operation, the thermodynamic energy efficiency “limits” of Moore's Law were unimaginably far off in the 1960s. However, current computers operate at only 100-10,000 times this limit, forming an argument that historical rates of efficiency scaling must soon slow. This paper reviews the justification for the ~kT per operation limit in the context of processors for von Neumann-class computer architectures of the 1960s. We then reapply the fundamental arguments to contemporary applications and identify a new direction for future computing in which the ultimate efficiency limits would be much further out. New nanodevices with high-level functions that aggregate the functionality of several logic gates and some local memory may be the right building blocks for much more energy efficient execution of emerging applications-such as neural networks.\",\"PeriodicalId\":387008,\"journal\":{\"name\":\"2016 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2016.7738677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2016.7738677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在20世纪60年代,每次操作的能量耗散约为kT,摩尔定律的热力学能效“极限”是难以想象的遥远。然而,目前的计算机运行速度只有这个极限的100-10,000倍,这就形成了一种观点,即历史上的效率扩展速度很快就会放缓。本文回顾了在20世纪60年代冯·诺伊曼级计算机体系结构的处理器背景下,每次操作限制~kT的合理性。然后,我们将基本论点重新应用于当代应用,并确定未来计算的新方向,其中最终的效率限制将远远超出。具有高级功能的新型纳米器件,集合了几个逻辑门和一些本地存储器的功能,可能是更节能地执行新兴应用程序(如神经网络)的正确构建模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A path toward ultra-low-energy computing
At roughly kT energy dissipation per operation, the thermodynamic energy efficiency “limits” of Moore's Law were unimaginably far off in the 1960s. However, current computers operate at only 100-10,000 times this limit, forming an argument that historical rates of efficiency scaling must soon slow. This paper reviews the justification for the ~kT per operation limit in the context of processors for von Neumann-class computer architectures of the 1960s. We then reapply the fundamental arguments to contemporary applications and identify a new direction for future computing in which the ultimate efficiency limits would be much further out. New nanodevices with high-level functions that aggregate the functionality of several logic gates and some local memory may be the right building blocks for much more energy efficient execution of emerging applications-such as neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信