基于鲁棒字典学习的输液异物检测

Mingtao Feng, Yaonan Wang, Chengzhong Wu
{"title":"基于鲁棒字典学习的输液异物检测","authors":"Mingtao Feng, Yaonan Wang, Chengzhong Wu","doi":"10.1109/ISKE.2015.62","DOIUrl":null,"url":null,"abstract":"Complicated sequential images acquired from the automatic particle inspection machine are used to extract tiny objects within bottled medical liquid on pharmaceutical production line. We propose a learning-based inspection method based on the theory of sparse representation and dictionary learning, which converts the inspection problem into background modeling. As discussed in the paper, the way of learning the dictionary is critical to the success of background modeling in our method. To build a correct background model when training samples contain foreign particles, illumination variation and outliers, we propose a robust dictionary learning algorithm and use online dictionary update method. It automatically prunes foreign particle pixels out at the learning stage. Experiments in both qualitative and quantitative comparisons with competing methods demonstrate the obtained robustness against background changes and better performance in foreign particle inspection.","PeriodicalId":312629,"journal":{"name":"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Foreign Particle Inspection for Infusion Fluids via Robust Dictionary Learning\",\"authors\":\"Mingtao Feng, Yaonan Wang, Chengzhong Wu\",\"doi\":\"10.1109/ISKE.2015.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complicated sequential images acquired from the automatic particle inspection machine are used to extract tiny objects within bottled medical liquid on pharmaceutical production line. We propose a learning-based inspection method based on the theory of sparse representation and dictionary learning, which converts the inspection problem into background modeling. As discussed in the paper, the way of learning the dictionary is critical to the success of background modeling in our method. To build a correct background model when training samples contain foreign particles, illumination variation and outliers, we propose a robust dictionary learning algorithm and use online dictionary update method. It automatically prunes foreign particle pixels out at the learning stage. Experiments in both qualitative and quantitative comparisons with competing methods demonstrate the obtained robustness against background changes and better performance in foreign particle inspection.\",\"PeriodicalId\":312629,\"journal\":{\"name\":\"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2015.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2015.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在制药生产线上,利用自动颗粒检测机采集的复杂序列图像提取瓶装药液中的微小物体。我们提出了一种基于稀疏表示和字典学习理论的基于学习的检测方法,将检测问题转化为背景建模。正如本文所讨论的那样,字典的学习方式对我们的方法中背景建模的成功至关重要。为了在训练样本中包含外来粒子、光照变化和异常值时建立正确的背景模型,我们提出了一种鲁棒字典学习算法,并使用在线字典更新方法。它在学习阶段自动修剪掉外来的粒子像素。定性和定量对比实验表明,该方法对背景变化具有较强的鲁棒性,在异物检测中具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Foreign Particle Inspection for Infusion Fluids via Robust Dictionary Learning
Complicated sequential images acquired from the automatic particle inspection machine are used to extract tiny objects within bottled medical liquid on pharmaceutical production line. We propose a learning-based inspection method based on the theory of sparse representation and dictionary learning, which converts the inspection problem into background modeling. As discussed in the paper, the way of learning the dictionary is critical to the success of background modeling in our method. To build a correct background model when training samples contain foreign particles, illumination variation and outliers, we propose a robust dictionary learning algorithm and use online dictionary update method. It automatically prunes foreign particle pixels out at the learning stage. Experiments in both qualitative and quantitative comparisons with competing methods demonstrate the obtained robustness against background changes and better performance in foreign particle inspection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信