五、新型堆焊粉末线材的开发。一种基于硅锰气体净化系统粉尘的粉末线

N. A. Коzyrev, R. Kryukov, A. Nepomnyaschikh, A. A. Usol’tsev, М. Popova
{"title":"五、新型堆焊粉末线材的开发。一种基于硅锰气体净化系统粉尘的粉末线","authors":"N. A. Коzyrev, R. Kryukov, A. Nepomnyaschikh, A. A. Usol’tsev, М. Popova","doi":"10.32339/0135-5910-2018-9-101-106","DOIUrl":null,"url":null,"abstract":"A new powder wire developed by using dust of gas cleaning systems of silicomanganese production plant and powder of gas cleaning systems of aluminum production at different proportion of components. As components the following was used: dust of gas cleaning systems of aluminum production plant, % (mas.): 21–46.23 Al2O3; 18–27 F; 8–15 Na2O; 0.4–6 K2O; 0.7–2.3 CaO; 0.5–2.48 Si2O; 2.1–3.27 Fe2O3; 12.5–30.2 Ctotal; 0.07–0.9 MnO; 0.06–0.9 MgO; 0.09–0.19 S; 0.1–0.18 P, and dust of gas cleaning systems of silicomanganese production plant, % (mas.): 2.43 Al2O3; 1.32 Na2O; 5.56 K2O; 6.4 CaO; 29.19 SiO2; 0.137 BaO; 7.54 MgO; 0.23 S; 0.04 P; 1.067 Fe; 27.69 Mn; 2.687 Zn; 3.833 Pb.The building-up was done under a flux, made of slag of silicomanganese plant of Zapadno-Sibirsky steel-works, havin the chemical composition (%, mas.): 6.91–9.62 Al2O3; 22.85–31.70 CaO; 46.46–48.16 SiO2; 0.27–0.81 FeO; 6.48–7.92 MgO; 8.01–8.43 MnO; 0.28–0.76 F; 0.26–0.36 Na2O; 0.62 K2O; 0.15–0.17 S; 0.01 P. The building-up mode selected. Samples wear tests were carried out at machine 2070 СМТ-1. Chemical composition of the built-up metal was determined at spectrometer ДФС-71. The hardness of built-up layers was measured by hardness meter МЕТ-ДУ. The estimation of nonmetallic inclusions was made as per GOST 1778– 70 by optical microscope Olympus GX-51.Quality indices studied and coefficients of manganese recovery at different proportions of components calculated. Statistical processing of the study results was made, statistical curves of influence of component compositions on properties of built-up layer constructed.","PeriodicalId":429631,"journal":{"name":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"V. Development of new powder wires for building-up. A powder wire based on dust of gas cleaning systems of silicomanganese\",\"authors\":\"N. A. Коzyrev, R. Kryukov, A. Nepomnyaschikh, A. A. Usol’tsev, М. Popova\",\"doi\":\"10.32339/0135-5910-2018-9-101-106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new powder wire developed by using dust of gas cleaning systems of silicomanganese production plant and powder of gas cleaning systems of aluminum production at different proportion of components. As components the following was used: dust of gas cleaning systems of aluminum production plant, % (mas.): 21–46.23 Al2O3; 18–27 F; 8–15 Na2O; 0.4–6 K2O; 0.7–2.3 CaO; 0.5–2.48 Si2O; 2.1–3.27 Fe2O3; 12.5–30.2 Ctotal; 0.07–0.9 MnO; 0.06–0.9 MgO; 0.09–0.19 S; 0.1–0.18 P, and dust of gas cleaning systems of silicomanganese production plant, % (mas.): 2.43 Al2O3; 1.32 Na2O; 5.56 K2O; 6.4 CaO; 29.19 SiO2; 0.137 BaO; 7.54 MgO; 0.23 S; 0.04 P; 1.067 Fe; 27.69 Mn; 2.687 Zn; 3.833 Pb.The building-up was done under a flux, made of slag of silicomanganese plant of Zapadno-Sibirsky steel-works, havin the chemical composition (%, mas.): 6.91–9.62 Al2O3; 22.85–31.70 CaO; 46.46–48.16 SiO2; 0.27–0.81 FeO; 6.48–7.92 MgO; 8.01–8.43 MnO; 0.28–0.76 F; 0.26–0.36 Na2O; 0.62 K2O; 0.15–0.17 S; 0.01 P. The building-up mode selected. Samples wear tests were carried out at machine 2070 СМТ-1. Chemical composition of the built-up metal was determined at spectrometer ДФС-71. The hardness of built-up layers was measured by hardness meter МЕТ-ДУ. The estimation of nonmetallic inclusions was made as per GOST 1778– 70 by optical microscope Olympus GX-51.Quality indices studied and coefficients of manganese recovery at different proportions of components calculated. Statistical processing of the study results was made, statistical curves of influence of component compositions on properties of built-up layer constructed.\",\"PeriodicalId\":429631,\"journal\":{\"name\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32339/0135-5910-2018-9-101-106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32339/0135-5910-2018-9-101-106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用硅锰生产装置气体清洗系统的粉尘和铝生产装置气体清洗系统的粉末在不同组分比例下研制出一种新型粉末线材。所使用的组分如下:铝生产厂气体净化系统粉尘,% (mas.): 21-46.23 Al2O3;18-27 F;Na2O 8 - 15日;0.4 6 K2O;0.7 - -2.3曹;0.5 - -2.48 Si2O;2.1 - -3.27 Fe2O3;12.5 - -30.2 Ctotal;0.07 - -0.9 MnO;0.06 - -0.9分别;0.09 - -0.19;0.1-0.18 P,硅锰生产装置气体净化系统粉尘,% (mas.): 2.43 Al2O3;1.32 Na2O;5.56 K2O;6.4曹;29.19二氧化硅;0.137包;7.54采用;0.23年代;0.04便士;1.067铁;27.69 Mn;2.687锌;3.833 Pb。该熔剂由Zapadno-Sibirsky钢铁厂硅锰厂渣制成,化学成分(%,mas): 6.91-9.62 Al2O3;22.85 - -31.70曹;46.46 - -48.16二氧化硅;0.27 - -0.81 FeO说;6.48 - -7.92分别;8.01 - -8.43 MnO;0.28 - -0.76 F;0.26 - -0.36 Na2O;0.62 K2O;0.15 - -0.17;0.01 P.选择的构建模式。样品磨损试验在机器2070 СМТ-1上进行。在光谱仪ДФС-71上测定了堆积金属的化学成分。用硬度计МЕТ-ДУ测定堆积层的硬度。采用Olympus GX-51光学显微镜,按照GOST 1778 - 70进行了非金属夹杂物的估计。研究了质量指标,计算了不同组分比例下锰的回收率系数。对研究结果进行了统计处理,构建了各组分对堆积层性能影响的统计曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
V. Development of new powder wires for building-up. A powder wire based on dust of gas cleaning systems of silicomanganese
A new powder wire developed by using dust of gas cleaning systems of silicomanganese production plant and powder of gas cleaning systems of aluminum production at different proportion of components. As components the following was used: dust of gas cleaning systems of aluminum production plant, % (mas.): 21–46.23 Al2O3; 18–27 F; 8–15 Na2O; 0.4–6 K2O; 0.7–2.3 CaO; 0.5–2.48 Si2O; 2.1–3.27 Fe2O3; 12.5–30.2 Ctotal; 0.07–0.9 MnO; 0.06–0.9 MgO; 0.09–0.19 S; 0.1–0.18 P, and dust of gas cleaning systems of silicomanganese production plant, % (mas.): 2.43 Al2O3; 1.32 Na2O; 5.56 K2O; 6.4 CaO; 29.19 SiO2; 0.137 BaO; 7.54 MgO; 0.23 S; 0.04 P; 1.067 Fe; 27.69 Mn; 2.687 Zn; 3.833 Pb.The building-up was done under a flux, made of slag of silicomanganese plant of Zapadno-Sibirsky steel-works, havin the chemical composition (%, mas.): 6.91–9.62 Al2O3; 22.85–31.70 CaO; 46.46–48.16 SiO2; 0.27–0.81 FeO; 6.48–7.92 MgO; 8.01–8.43 MnO; 0.28–0.76 F; 0.26–0.36 Na2O; 0.62 K2O; 0.15–0.17 S; 0.01 P. The building-up mode selected. Samples wear tests were carried out at machine 2070 СМТ-1. Chemical composition of the built-up metal was determined at spectrometer ДФС-71. The hardness of built-up layers was measured by hardness meter МЕТ-ДУ. The estimation of nonmetallic inclusions was made as per GOST 1778– 70 by optical microscope Olympus GX-51.Quality indices studied and coefficients of manganese recovery at different proportions of components calculated. Statistical processing of the study results was made, statistical curves of influence of component compositions on properties of built-up layer constructed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信