非线性状态空间模型的基于示例的隐马尔可夫模型框架

Redouane Lguensat, Ronan Fablet, P. Ailliot, P. Tandeo
{"title":"非线性状态空间模型的基于示例的隐马尔可夫模型框架","authors":"Redouane Lguensat, Ronan Fablet, P. Ailliot, P. Tandeo","doi":"10.1109/EUSIPCO.2016.7760667","DOIUrl":null,"url":null,"abstract":"In this work we present a data-driven method for the reconstruction of dynamical systems from noisy and incomplete observation sequences. The key idea is to benefit from the availability of representative datasets of trajectories of the system of interest. These datasets provide an implicit representation of the dynamics of this system, in contrast to the explicit knowledge of the dynamical model. This data-driven strategy is of particular interest in a large variety of situations, e.g., modeling uncertainties and inconsistencies, unknown explicit models, computationally demanding models, etc. We address this exemplar-based reconstruction issue using a Hidden Markov Model (HMM) and we illustrate the relevance of the method for missing data interpolation issues in multivariate time series. As such, our contribution opens new research avenues for a variety of application domains to exploit the wealth of archived observation and simulation data, aiming a better analysis and reconstruction of dynamical systems using past and future observation sequences.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exemplar-based hidden Markov model framework for nonlinear state-space models\",\"authors\":\"Redouane Lguensat, Ronan Fablet, P. Ailliot, P. Tandeo\",\"doi\":\"10.1109/EUSIPCO.2016.7760667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a data-driven method for the reconstruction of dynamical systems from noisy and incomplete observation sequences. The key idea is to benefit from the availability of representative datasets of trajectories of the system of interest. These datasets provide an implicit representation of the dynamics of this system, in contrast to the explicit knowledge of the dynamical model. This data-driven strategy is of particular interest in a large variety of situations, e.g., modeling uncertainties and inconsistencies, unknown explicit models, computationally demanding models, etc. We address this exemplar-based reconstruction issue using a Hidden Markov Model (HMM) and we illustrate the relevance of the method for missing data interpolation issues in multivariate time series. As such, our contribution opens new research avenues for a variety of application domains to exploit the wealth of archived observation and simulation data, aiming a better analysis and reconstruction of dynamical systems using past and future observation sequences.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种数据驱动的方法,用于从噪声和不完全观测序列中重建动力系统。关键思想是受益于感兴趣的系统的轨迹的代表性数据集的可用性。与动力学模型的显式知识相比,这些数据集提供了该系统动力学的隐式表示。这种数据驱动的策略在很多情况下都特别有趣,例如,建模的不确定性和不一致性、未知的显式模型、计算要求高的模型等。我们使用隐马尔可夫模型(HMM)解决了这个基于示例的重建问题,并说明了该方法与多元时间序列中缺失数据插值问题的相关性。因此,我们的贡献为各种应用领域开辟了新的研究途径,以利用丰富的存档观测和模拟数据,旨在利用过去和未来的观测序列更好地分析和重建动态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An exemplar-based hidden Markov model framework for nonlinear state-space models
In this work we present a data-driven method for the reconstruction of dynamical systems from noisy and incomplete observation sequences. The key idea is to benefit from the availability of representative datasets of trajectories of the system of interest. These datasets provide an implicit representation of the dynamics of this system, in contrast to the explicit knowledge of the dynamical model. This data-driven strategy is of particular interest in a large variety of situations, e.g., modeling uncertainties and inconsistencies, unknown explicit models, computationally demanding models, etc. We address this exemplar-based reconstruction issue using a Hidden Markov Model (HMM) and we illustrate the relevance of the method for missing data interpolation issues in multivariate time series. As such, our contribution opens new research avenues for a variety of application domains to exploit the wealth of archived observation and simulation data, aiming a better analysis and reconstruction of dynamical systems using past and future observation sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信