直径2和外平面图中的同构集

Slobodan Mitrovic
{"title":"直径2和外平面图中的同构集","authors":"Slobodan Mitrovic","doi":"10.1109/MELCON.2014.6820529","DOIUrl":null,"url":null,"abstract":"We improve the best previously-known lower bound on the size of largest homometric sets in sparse diameter-two graphs. Along with the proof, we provide a method for constructing the desired homometric sets. We also study outerplanar graphs and show how to construct homometric sets in a given outerplanar graph of the size at least clogn, where n is the number of vertices in the graph, and c a positive fixed constant.","PeriodicalId":103316,"journal":{"name":"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homometric sets in diameter-two and outerplanar graphs\",\"authors\":\"Slobodan Mitrovic\",\"doi\":\"10.1109/MELCON.2014.6820529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We improve the best previously-known lower bound on the size of largest homometric sets in sparse diameter-two graphs. Along with the proof, we provide a method for constructing the desired homometric sets. We also study outerplanar graphs and show how to construct homometric sets in a given outerplanar graph of the size at least clogn, where n is the number of vertices in the graph, and c a positive fixed constant.\",\"PeriodicalId\":103316,\"journal\":{\"name\":\"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELCON.2014.6820529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2014.6820529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们改进了先前已知的关于稀疏直径2图中最大同调集大小的最佳下界。在证明的基础上,给出了构造期望同距集的一种方法。我们还研究了外平面图,并展示了如何在给定的外平面图中构造大小至少为clogn的同调集,其中n为图中的顶点数,c为正固定常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homometric sets in diameter-two and outerplanar graphs
We improve the best previously-known lower bound on the size of largest homometric sets in sparse diameter-two graphs. Along with the proof, we provide a method for constructing the desired homometric sets. We also study outerplanar graphs and show how to construct homometric sets in a given outerplanar graph of the size at least clogn, where n is the number of vertices in the graph, and c a positive fixed constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信